Exemples

  • Modèle de part de marché - Sensibilité à la Pulicité 1 [2.43-49.1]
  • Modèle de part de marché - Sensibilité à la Pulicité 2 [2.43-49.2]
  • Modèle de part de marché - Sensibilité à la Pulicité 3 [2.43-49.3]
  • Modèle de part de marché - Sensibilité à la Pulicité 4 [2.43-49.4]

1.                               # attribuer valeurs aux coefs

2.                               a1=2; b1=0.5; c1=2; d1=7

3.                               a2=0; b2=3; c2=-1.5; d2=0

4.                               a4=2; b4=0.5; c4=2 ; d4=7

5.                               a5=0; b5=3; c5=-1.5; d5=0

6.                               # Valeurs des variables marketing

7.                               x1<-seq(0,40,1) # notre pub

8.                               # Variables fixes

9.                               # Notre Prix; Leur pub ; Leur Prix

10.                             x2<-rep(2,41); x4<-rep(3,41) ; x5<-rep(2,41)

11.                             # Attractions

12.                             na<-1*(b1+(a1-b1)*((x1)^c1/(d1^c1+(x1)^c1)))^0.6*(a2+b2*(x2)^c2)^0.4

13.                             ca<-1*(b4+(a4-b4)*((+1*x4)^c4/(d4^c4+(+1*x4)^c4)))^0.6*(a5+b5*(x5)^c5)^0.4

14.                             # Part de marché

15.                             nms<-na/(na+ca)

16.                             df<-data.frame(Notre.Pub=x1, Part1=nms)

17.                             # Notre Prix; Leur pub ; Leur Prix

18.                             x4<-rep(6,41)

19.                             # Attractions

20.                             na<-1*(b1+(a1-b1)*((x1)^c1/(d1^c1+(x1)^c1)))^0.6*(a2+b2*(x2)^c2)^0.4

21.                             ca<-1*(b4+(a4-b4)*((+1*x4)^c4/(d4^c4+(+1*x4)^c4)))^0.6*(a5+b5*(x5)^c5)^0.4

22.                             # Part de marché

23.                             nms<-na/(na+ca)

24.                             df$Part2=nms

25.                             # Notre Prix; Leur pub ; Leur Prix

26.                             x4<-rep(3,41)

27.                             x5<-rep(1.6,41)

28.                             # Attractions

29.                             na<-1*(b1+(a1-b1)*((x1)^c1/(d1^c1+(x1)^c1)))^0.6*(a2+b2*(x2)^c2)^0.4

30.                             ca<-1*(b4+(a4-b4)*((+1*x4)^c4/(d4^c4+(+1*x4)^c4)))^0.6*(a5+b5*(x5)^c5)^0.4

31.                             # Part de marché

32.                             nms<-na/(na+ca)

33.                             df$Part3=nms

34.                             # Notre Prix; Leur pub ; Leur Prix

35.                             x2<-rep(1.6,41)

36.                             x5<-rep(2,41)

37.                             # Attractions

38.                             na<-1*(b1+(a1-b1)*((x1)^c1/(d1^c1+(x1)^c1)))^0.6*(a2+b2*(x2)^c2)^0.4

39.                             ca<-1*(b4+(a4-b4)*((+1*x4)^c4/(d4^c4+(+1*x4)^c4)))^0.6*(a5+b5*(x5)^c5)^0.4

40.                             # Part de marché

41.                             nms<-na/(na+ca)

42.                             df$Part4=nms

43.                             matplot(x1, df[,2:5], pch = 1:4, type = "o", col = 1:4,xlab="Valeurs de x", ylab="Ventes et/ou Profits"

44.                             legend(min(x), max(df[,2:5]),names(df)[2:5], lwd=3, col=1:4, pch=1:4)

  • Modèle de part de marché - Sensibilité au Prix 5 [2.43-49.5]
  • Modèle de part de marché - Sensibilité au Prix 6 [2.43-49.6]
  • Modèle de part de marché - Sensibilité au Prix 7 [2.43-49.7]
  • Modèle de part de marché - Sensibilité au Prix 8 [2.43-49.8]

1.                               # attribuer valeurs aux coefs

2.                               a1=2; b1=0.5; c1=2; d1=7 # Pub Adbudg

3.                               a2=0; b2=3; c2=-1.5; d2=0 # Prix Fracroot

4.                               a4=2; b4=0.5; c4=2 ; d4=7 # Pub Adbudg

5.                               a5=0; b5=3; c5=-1.5; d5=0 # Prix Fracroot

6.                               # Valeurs des variables marketing

7.                               x2<-seq(1,6,1) # notre prix

8.                               # Variables fixes

9.                               # Notre Prix; Leur pub ; Leur Prix

10.                             x1<-rep(3,6)

11.                             x4<-rep(3,6)

12.                             x5<-rep(2,6)

13.                             # Attractions

14.                             na<-(b1+(a1-b1)*(x1^c1/(d1^c1+x1^c1)))^0.6*(a2+b2*x2^c2)^0.4

15.                             ca<-(b4+(a4-b4)*(x4^c4/(d4^c4+x4^c4)))^0.6*(a5+b5*x5^c5)^0.4

16.                             # Part de marché

17.                             nms<-na/(na+ca)

18.                             df<-data.frame(Notre.Pub=x1, Part1=nms)

19.                             # Notre Pub

20.                             x1<-rep(6,6)

21.                             # Attractions

22.                             na<-(b1+(a1-b1)*(x1^c1/(d1^c1+x1^c1)))^0.6*(a2+b2*x2^c2)^0.4

23.                             ca<-(b4+(a4-b4)*(x4^c4/(d4^c4+x4^c4)))^0.6*(a5+b5*x5^c5)^0.4

24.                             # Part de marché

25.                             nms<-na/(na+ca)

26.                             df$Part2=nms

27.                             x1<-rep(3,6)

28.                             x4<-rep(6,6)

29.                             # Attractions

30.                             na<-(b1+(a1-b1)*(x1^c1/(d1^c1+x1^c1)))^0.6*(a2+b2*x2^c2)^0.4

31.                             ca<-(b4+(a4-b4)*(x4^c4/(d4^c4+x4^c4)))^0.6*(a5+b5*x5^c5)^0.4

32.                             # Part de marché

33.                             nms<-na/(na+ca)

34.                             df$Part3=nms

35.                             # Notre Prix; Leur pub ; Leur Prix

36.                             x4<-rep(3,6)

37.                             x5<-rep(1.6,6)

38.                             # Attractions

39.                             na<-(b1+(a1-b1)*(x1^c1/(d1^c1+x1^c1)))^0.6*(a2+b2*x2^c2)^0.4

40.                             ca<-(b4+(a4-b4)*(x4^c4/(d4^c4+x4^c4)))^0.6*(a5+b5*x5^c5)^0.4

41.                             # Part de marché

42.                             nms<-na/(na+ca)

43.                             df$Part4=nms

44.                             matplot(x2, df[,2:5], pch = 1:4, type = "o", col = 1:4,xlab="Valeurs de x", ylab="Ventes et/ou Profits"

45.                             legend(min(x2), max(df[,2:5]),names(df)[2:5], lwd=3, col=1:4, pch=1:4)

Michel Calciu calciu@iae.univ-lille1.fr; - Cours IAE de Lille 2004 - -