Adjonction d'interaction

  • Modèle à deux variables avec interaction positive [ 2.24]
  • Modèle à deux variables avec interaction negative [ 2.25]

1.                               a=10

2.                               b=0

3.                               c=2

4.                               d1=2

5.                               d2=1.5

6.                               x1<-seq(0,9,1) # publicite varie

7.                               x2<-rep(5,10) # force de vent fixé a 5

8.                               g1<-b+(a-b)*((x1)^c/(d1^c+(x1)^c))

9.                               g2<-b+(a-b)*((x2)^c/(d2^c+(x2)^c))

10.                             y<-15+1*g1+1.6*g2

11.                             df<-data.frame(Effort=x1, Ventes.Interaction0 = y)

12.                             y<-15+1*g1+1.6*g2+0.05*g1*g2

13.                             df$Ventes.Interact.Pos = y

14.                             y<-15+1*g1+1.6*g2-0.05*g1*g2

15.                             df$Ventes.Interact.Neg = y

16.                             df

17.                             matplot(x1, df[,2:4], pch=1:4, type = "o", col = 1:3, xlab="Valeurs de x", ylab="Ventes et/ou Profits"

18.                             legend(min(x), max(df[,2:4]),names(df)[2:4], lwd=3, col=1:3, pch=1:3)

Michel Calciu calciu@iae.univ-lille1.fr; - Cours IAE de Lille 2004 - -