Modèles Nonlinéaires

  • Modele Adbudg, lègèrement plus sensible à la publicité qu'à la force de vente [ 2.21]
  • Modele Adbudg, lègèrement moins sensible à la force de vente qu'à la publicité[ 2.21_2]

1.                               a=10

2.                               b=0

3.                               c=2

4.                               d=2

5.                               x<-seq(0,10,1)

6.                               y<-b+(a-b)*((x)^c/(d^c+(x)^c))

7.                               df<-data.frame(Effort=x, Ventes.ForceV=y)

8.                               d=1.5

9.                               y<-b+(a-b)*((x)^c/(d^c+(x)^c))

10.                             df$Ventes.Pub=y

11.                             df

12.                             matplot(x, df[,2:3], pch = 1:2, type = "o", col = 1:2,xlab="Valeurs de x", ylab="Ventes et/ou Profits"

13.                             legend(min(x), max(df[,2:3]),names(df)[2:3], lwd=3, col=1:2, pch=1:2)

  • Modèle à deux variables sans interactions [ 2.23]

1.                               a=10

2.                               b=0

3.                               c=2

4.                               d1=2

5.                               d2=1.5

6.                               x1<-seq(0,9,1) # varie

7.                               x2<-rep(0,10) # fix

8.                               g1<-b+(a-b)*((x1)^c/(d1^c+(x1)^c))

9.                               g2<-b+(a-b)*((x2)^c/(d2^c+(x2)^c))

10.                             y<-15+1*g1+1.6*g2

11.                             df<-data.frame(Effort=x1, Ventes.Pub=y)

12.                             x1<-rep(0,10) # fix

13.                             x2<-seq(0,9,1) # varie

14.                             g1<-b+(a-b)*((x1)^c/(d1^c+(x1)^c))

15.                             g2<-b+(a-b)*((x2)^c/(d2^c+(x2)^c))

16.                             y<-15+1*g1+1.6*g2

17.                             df$Ventes.ForceV=y

18.                             df

19.                             matplot(x2, df[,2:3], pch=1:2, type = "o", col = 1:2, xlab="Valeurs de x", ylab="Ventes et/ou Profits")

20.                             legend(min(x), max(df[,2:3]),names(df)[2:3], lwd=3, col=1:2, pch=1:2)

Michel Calciu calciu@iae.univ-lille1.fr; - Cours IAE de Lille 2004 - -