
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Ja

Mozill

Publis

Chat

encryp

SSL

TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

Developer’s
Handbook

Netscape ECXpert™
Version 3.0

02 July 99
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

vaScript
Proxycertificate

Publishing

tion

secure sockets layer

Netscape Communications Corporation (“Netscape”), a subsidiary of America Online, Inc., and its licensors retain all
ownership rights to the software programs offered by Netscape (referred to herein as “Software”) and related
documentation. Use of the Software and related documentation is governed by the license agreement accompanying
the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND
ARISING FROM ANY ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR
INTERRUPTION OF BUSINESS, PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1999 Netscape Communications Corporation, a subsidiary of
America Online, Inc. All rights reserved.

Portions of this product are based upon copyrighted materials of Oracle Corporation, Inc. and Netscape
Communications Corporation, RSA Data Security, Inc. copyright © 1994, 1995 RSA Data Security, Inc. Portions
copyright © 1996 BMC Software, Inc. All rights reserved. Portions copyright © 1996 TSI International, Inc. Portions
copyright © 1996-1997 Actuate Software Corporation. All rights reserved.

Netscape, Netscape Navigator, and the Netscape N and Ship’s Wheel logos are registered trademarks in the United
States and other countries of Netscape Communications Corporation, a subsidiary of America Online, Inc. ECXpert,
TradingXpert, and other Netscape logos, product names, and service names are also trademarks of Netscape, which
may be registered in some countries. Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must
be in full compliance with all United States and other applicable laws and regulations. Any provision of Netscape
software or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

The Team: (listed alphabetically)
Jim Adkins, Moosa Choudry, Brenna Chow, Jun Ding, Cyril Egan, David Enck, Eric Enders, June Foster, Kaining Gu,
Jeanine Harriman, Scott Jolly, Pooja Kochadai, Albert Lee, David Lewis, Donagh Noone, Dong-wei Liao, Ed Miner, Lea
Lucente, Suresh Mani, Shelton Mar, Alex Medina, Emily Morris, Linda Pratt, ALN Reddy, Naren Tammineni, Tien Tran,
Johnny Wang, Wade Williamson, John Wolley, Jeff Wreden, Ryh-Wei Yeh, Prasad Yendluri, Leon Yerevanian

Thanks also to the following contributors: (listed alphabetically)
Robert Al-Jaar, Bernard Blundell, Dave Butler, Karen Chang, Daniel Chiu, Jimmy Chow, Ravi Devesetti, Cyril Egan,
Rakesh Garg, Mehrdad Golbidi, Christopher Guzman, Stephen Hulme, Ken Johnson, Robert Kemner, Suntae Kim,
Eric Krock, Shirish Kumar, Jason LaBranch, Tom Limanek, Felicia Lin, Morten Marquard, Steven Martin, Craig
Mosenson, Jay Mundanat, Donagh Noone, James Orkins, Roland Pennings, Stefano Picozzi, Max Poon, Jay Raman,
Jane Richter, Christian Schutz, Kent Schwab, Michiel Smit, Ronald Tay, Stacy Thurston, Blaine Williams

Version 3.0
©Netscape Communications Corporation 1997-1999
All Rights Reserved
Printed in USA

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper
02 July 99

Contents

About this Book... 11

Before You Begin ...11

Downloading the Latest Version of any ECXpert Release Note11

The ECXpert Documentation Set ...12

Cross-Document Index ..12

Release Note...13

Getting Started Guide...13

User’s Guide ...13

Site Administrator’s Handbook..14

Operations Reference Manual ...14

Audience ...14

Organization..15

Conventions ..17

Chapter 1 Introducing the ECXpert Software Developer’s Kit ... 19

Overview ...20

Custom Services ..20

User-Defined Communications Service ...20

ECXpert API ..20

Class Library ...22

Relationship Between Objects and Database Records...................................23

Database Access ...23

Using Lists...24

Error Handling..24

Oracle Warnings When Compiling the ECXpert SDK....................................26

Custom Reports...27
02 July 99 Contents iii

Chapter 2 Creating a Custom Service ... 29

Overview .. 30

Language Requirements... 30

Call and Return Conventions... 31

The Parameter-specification File... 31

The Data-specification File.. 32

The Custom Parameter File... 33

Custom Service Examples .. 39

Parsing Command Line Arguments .. 39

Implementing a File-copy Service .. 40

Implementing a Submission Service... 42

Chapter 3 Creating a User-defined Communications Service..... 43

Overview .. 44

Modifying the Configuration File (ecx.ini) ... 45

Writing a User-defined Communications Service ... 49

Chapter 4 Using the NAS ECXpert Submit Extension.................. 51

About the NAS ECXpert Extension.. 52

NAS ECXpert Extension Interfaces .. 53

Using the NAS ECXpert Submit Extension.. 53

Syntax and Methods .. 55

Example ... 56

Chapter 5 The ECXpert XML SDK ... 63

Overview .. 64

Directory Structure and Source Files... 64

CXIP_MSG Class Reference ... 66

Constructor and Destructor ... 66

CXxsMSG Class Reference ... 67

Constructor and Destructor ... 67

Methods.. 68

CXxsDOM Class Reference .. 85

Constructor and Destructor ... 85

Methods.. 86
iv Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXIPInit Class Reference.. 89

Constructor and Destructor ... 89

Methods.. 90

CXIPConnection Class Reference .. 91

Constructor and Destructor ... 92

Methods.. 92

CXIPListener Class Reference .. 93

Constructor and Destructor ... 94

Methods.. 94

CXSubmit Class Reference ... 96

Constructor and Destructor ... 96

Methods.. 96

Examples... 99

Chapter 6 The EcxBase Class ...101

About the EcxBase Class.. 102

EcxBase Class Reference.. 102

Constants and Data Types... 103

Constructor and Destructor ... 103

Methods.. 103

Chapter 7 The EcxInit Class...107

About the EcxInit Class .. 108

Using the EcxInit Class... 108

EcxInit Class Reference .. 108

Constructor and Destructor ... 109

Chapter 8 The EcxSubmit Class...111

About the EcxSubmit Class .. 112

Using the EcxSubmit Class... 114

EcxSubmit Class Reference .. 117

Constructor and Destructor ... 117

Methods.. 118
02 July 99 Contents v

Chapter 9 The EcxLogin Class... 127

About the EcxLogin Class .. 128

Using the EcxLogin Class... 128

EcxLogin Class Reference .. 129

Constructor and Destructor ... 129

Methods.. 129

Chapter 10 The EcxMember Class .. 133

About the EcxMember Class.. 134

Using the EcxMember Class .. 135

Creating Member Objects.. 136

Adding Members.. 136

Changing Members’ Fields .. 137

Listing Members... 138

Deleting Members.. 139

EcxMember Class Reference.. 139

Class Variables ... 140

Constructor and Destructor ... 140

Methods.. 141

Chapter 11 The EcxAddresses Class ... 157

About the EcxAddresses Class... 158

Using the EcxAddresses Class ... 158

EcxAddresses Class Reference... 159

Constructor and Destructor ... 160

Methods.. 160

Chapter 12 Partnership-Related Classes..................................... 165

About the EcxPartnership Class... 166

Using the EcxPartnership Class ... 169

Creating Partnership Objects... 170

Adding Partnerships .. 170

Listing Partnerships.. 171

Deleting Partnerships .. 174

EcxPartnership Class Reference... 174
vi Netscape ECXpert Site Administrator’s Handbook 02 July 99

Class Variables ... 175

Constructor and Destructor ... 177

Methods.. 178

About the EcxPartnerID Class.. 209

EcxPartnerID Class Reference.. 210

Constructor and Destructor ... 210

Methods.. 211

Chapter 13 Document-Related Classes..213

About the EcxDocument Class .. 214

Using the EcxDocument Class... 215

EcxDocument Class Reference .. 218

Constants and Data Types... 218

Constructor and Destructor ... 218

Methods.. 219

About the EcxDocID Class... 231

EcxDocID Class Reference... 232

Constructor and Destructor ... 233

Methods.. 233

Chapter 14 The EcxTracking Class..235

About the EcxTracking Class ... 236

Using the EcxTracking Class.. 237

EcxTracking Class Reference ... 239

Class Variables ... 239

Constructor and Destructor ... 239

Methods.. 240

Chapter 15 The EcxLog Class...251

About the EcxLog Class ... 252

Using the EcxLog Class .. 253

EcxLog Class Reference.. 254

Class Variables ... 254

Constructor and Destructor ... 255

Methods.. 256
02 July 99 Contents vii

Chapter 16 The EcxFtpClient Class... 263

About the EcxFtpClient Class .. 264

Using the EcxFtpClient Class ... 264

Listing Files in the Current Directory.. 265

Retrieving File Names.. 267

Transferring Files ... 268

}EcxFtpClient Class Reference.. 270

Constructor and Destructor ... 270

Methods.. 270

Chapter 17 The EcxService Class .. 275

About the EcxService Class.. 276

Using the EcxService Class .. 277

Creating a Service Object .. 277

Adding a Service.. 278

Listing All Services ... 278

Modifying a Service ... 279

Deleting a Service.. 279

EcxServiceClass Reference... 280

Class Variables ... 280

Constructor and Destructor ... 281

Methods.. 281

Chapter 18 The EcxServiceList Class .. 291

About the EcxServiceList Class .. 292

Using the EcxServiceList Class... 293

Creating a Service List Object ... 293

Adding a Service List ... 294

Listing All Service Lists .. 294

Modifying a Service List .. 295

Deleting a Service List ... 296

EcxServiceList Class Reference .. 296

Class Variables ... 297
Constructor and Destructor ... 297
Methods.. 297
viii Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter 19 Customizing Reports...307

Overview... 308

Starting a New Report .. 309

Building a Query .. 312

Laying Out a Report ... 317

Creating Frames ... 317

Displaying Data.. 319

Running a Report... 324

Adding Headers and Footers .. 326

Adding Report Parameters ... 330

Building Complex Queries .. 334

Joining Tables .. 334

Creating Dynamic Queries .. 337

Displaying Groups of Data .. 338

Displaying Row-related Data ... 342

Appendix A ECXpert Database Schema347

Cautions in Using the Database Schema... 348

Extending Table and Rollback Segment Space... 348

Values of AckState.. 349

Alphabetical Listing of Tables.. 352

Schema Overview... 354

System-wide Tables.. 357

Job .. 357

Versions.. 359

Services... 359

DTServices.. 360

UniqueKeys.. 361

BlobInfo ... 362

Membership-related Tables.. 362

Members... 363

MBAddresses.. 365
02 July 99 Contents ix

Partnership-related Tables ... 366

Partnerships.. 366

PNDocs... 368

PNCard ... 371

PNGroup .. 372

PNStd.. 373

Certificate-related Tables.. 375

Certificates.. 375

CRL ... 376

CertTypeInfo .. 377

KeyPairs.. 378

Tracking-related Tables.. 379

Tracking ... 379

TrkIntchg.. 383

TrkGroup ... 386

TrkDoc ... 388

TrkSegment .. 394

TrkDocDetails .. 394

MDNInfo .. 396

Oftp .. 397

EventLog... 398

MsgFormats .. 400

Index .. 401
x Netscape ECXpert Site Administrator’s Handbook 02 July 99

About this Book
his Handbook describes the concepts, interface and underlying
data organization of the ECXpert Software Developer’s Kit.

This Preface discusses the intended audience, the organization
of the Handbook, and provides a listing of typographic conven-
tions used in this document. If you spend a few minutes looking
through the Preface before reading the rest of the Handbook,

you will be able to utilize the Handbook more effectively.

Before You Begin
You only need to use this manual if you are running command line utilities or
your are developing C++ programs that submit files to ECXpert or access the
ECXpert database.

If you need an overview of ECXpert, read the ECXpert System Site Adminis-
trator’s Guide first. You should read Chapter 1, “Introducing the ECXpert
Software Developer’s Kit,” in this manual to obtain a brief overview of the SDK
components. If you are using the API in conjunction with TradingXpert, you
should read the TradingXpert Getting Started Guide as well.

Before you begin, download the latest version of the ECXpert Release Note.
See the following section for instructions.

Downloading the Latest Version of any
ECXpert Release Note

We continuously update Netscape ECXpert release notes. Follow these steps
to:

• Determine whether you have the latest version of any Netscape ECXpert
Release Note

T

02 July 99 About this Book 11

The ECXpert Documentation Set
• Download a copy of any Netscape ECXpert Release Note

• Provide a link to any ECXpert Release Note on the Netscape ECXpert
Support | Help | Manuals screen

Note In these instructions, the environment variable or $NSBASE is the full path
to the Netscape ECXpert installation directory. See “Setting Up the $NSBASE
Environment Variable” in the ECXpert Getting Started Guide.

1. Go to the ECXpert Product Information and Support web page.

http://help.netscape.com/products/apps/ecxpert/

2. Find the most recent version of the ECXpert Release Note.

To find the most recent version of the ECXpert Release Note, look at the
date next to the link to the ECXpert Release Note PDF file.

3. Download the ECXpert Release Note PDF file.

4. Copy the release note into the manuals directory.

$NSBASE/NS-apps/ECXpert/UI/html/help/manuals

5. Include a link to the release note on the “manuals” screen.

Edit the $NSBASE/NS-apps/ECXpert/UI/html/help/frm2man.htm file to
include a reference to the ECXpert Release Note PDF file.

A link to the ECXpert Release Note PDF file should appear in the left frame
of the Support | Help | Manuals screen.

The ECXpert Documentation Set
You may wish to refer to other ECXpert books for additional information. This
section discusses each book in the ECXpert documentation set.

Cross-Document Index

This Cross-Document Index indexes topics across the entire document set. If a
topic appears in multiple books, the Cross-document Index lists each book and
page number the topic appears on.
12 Netscape ECXpert Site Administrator’s Handbook

The ECXpert Documentation Set
Release Note

After you receive the ECXpert 2.0 software, before you do anything else, you
should download the ECXpert 2.0 Release Note. See “Downloading the Latest
Version of any ECXpert Release Note” on page 11 for instructions.

The Release Note contains:

• A list of bugs fixed in the current release

• A list of all documentation corrections

• Warnings and workarounds for known problems

• Additional important information you should know before you install or use
ECXpert

The Release Note is platform-specific, so make sure you have the right version
for the platform you’re using.

Getting Started Guide

The ECXpert Getting Started Guide is the book you use to install ECXpert. It
includes preinstallation tasks—including basic instructions for installing or
upgrading to the required version of Oracle—ECXpert installation steps, and
information on additional tasks you may wish to perform after you install
ECXpert. The Getting Started Guide is platform-specific, so make sure you have
the right version for the platform you’re using.

User’s Guide

All documentation needed by ordinary users is supplied in the ECXpert User’s
Guide and in the online help.
02 July 99 About this Book 13

Audience
Site Administrator’s Handbook

The ECXpert Site Administrator’s Handbook is written for the ECXpert System’s
site administrator. This book provides an overview of the ECXpert system and
uses specific examples, or “scenarios,” to illustrate the different ways in which
ECXpert can be used most effectively in a wide variety of different business
situations. It also covers the ECXpert Server Administrative Interface in depth,
discusses the ECXpert commandline utilities, and explains how to integrate
ECXpert with Oracle Financials, SAP, and MQSeries.

Operations Reference Manual

If you ever have difficulty using ECXpert, the ECXpert Operations Reference
Manual more than likely documents a quick resolution. This book contains
basic troubleshooting guidelines for ECXpert, other Netscape products, and
Third-party products. It also includes a complete error message reference.

Audience
This manual is written for several audiences:

• system administrators who want to run command line utility programs

• C++ programmers who want to manipulate the ECXpert database outside of
ECXpert or submit files to ECXpert for processing

• database administrators who need to know the structure of an ECXpert
database
14 Netscape ECXpert Site Administrator’s Handbook

Organization
Organization
This manual is divided into 15 chapters and three appendixes:

• Chapter 1, “Introducing the ECXpert Software Developer’s Kit,” identifies the
command lines utilities and classes in the SDK. It also introduces custom
services.

• Chapter 2, “Creating a Custom Service,” describes how to create a custom
service.

• Chapter 3, “Creating a User-defined Communications Service,”describes how
to write a program or script that you want to install as a user-defined
communications service.

• Chapter 4, “Using the NAS ECXpert Submit Extension,” describes the JavaS-
cript API for the SDK.

• Chapter 5, “The ECXpert XML SDK,” describes the the ECXpert XML software
developer kit (SDK).

• Chapter 6, “The EcxBase Class,” describes the base class for classes in the
SDK.

• Chapter 7, “The EcxInit Class,” describes a class for initializing other objects.

• Chapter 8, “The EcxSubmit Class,” describes a class for submitting files to
ECXpert for processing.

• Chapter 9, “The EcxLogin Class,” describes a class that represents a logged-in
user.

• Chapter 10, “The EcxMember Class,” describes a class that represents
member records in an ECXpert database.

• Chapter 11, “The EcxAddresses Class,” describes a class that represents
member address records in an ECXpert database.

• Chapter 12, “Partnership-Related Classes,” describes a class that represents
partnership-related records.

• Chapter 13, “Document-Related Classes,” describes a class that represents
records in an ECXpert database for documents sent to the logged-in user via
ECXpert.

• Chapter 14, “The EcxTracking Class,” describes a class that represents
records in an ECXpert database for documents sent from the logged-in user
via ECXpert.
02 July 99 About this Book 15

Organization
• Chapter 15, “The EcxLog Class,” describes a class that represents log records
in an ECXpert database.

• Chapter 16, “The EcxFtpClient Class,” describes a class that is an FTP client
API which allows you to send and receive files via FTP.

• Chapter 17, “The EcxService Class,” describes a class that represents service
records in an ECXpert database.

• Chapter 18, “The EcxServiceList Class,” describes a class that represents
service list records in an ECXpert database.

• Chapter 19, “Customizing Reports,” describes how to use the Actuate
Reporting System to create custom reports that access the ECXpert database.

• Appendix A, “ECXpert Database Schema,” details the table structure of the
database underlying the ECXpert System.
16 Netscape ECXpert Site Administrator’s Handbook

Conventions
Conventions
A number of typographic conventions are used throughout this manual to help
you recognize special terms and instructions. These conventions are summa-
rized in the table below.

Convention Meaning Example

boldface items on the screen Click the Submit button to save your changes.

names of keys Press Enter to clear the message.

boldface
numbered
steps

higher level descriptions of
tasks you perform (more
detailed instructions follow)

3. Enter the group information.

Enter the name in the Group Name field, and a
short description in the Description field.

italics key words, such as terms
that are defined in the text

The notices posted on an electronic BBS are called
articles.

names of books For more information, refer to the Netscape
ECXpert Getting Started Guide.

courier
font

command line input or
output

Enter the following command:

ls *.html

text file content, such as
HTML templates and con-
figuration files

<TITLE>Password Check</TITLE>

code samples Syntax: const char* getName() const;
02 July 99 About this Book 17

Conventions
18 Netscape ECXpert Site Administrator’s Handbook

C h a p t e r

1
Introducing the ECXpert Software

Developer’s Kit
his chapter provides a description of the software developement kit for
ECXpert. This description provides an overview of the command line

utilities, custom services, and API.

This chapter contains the following sections:

• Overview

• Custom Services

• User-Defined Communications Service

• ECXpert API

• Custom Reports

T

02 July 99 Chapter 1, Introducing the ECXpert Software Developer’s Kit 19

Overview
Overview
The ECXpert Software Development Kit consists of the following parts:

• a protocol for implementing custom services

• an API for accessing the database and for submitting files to ECXpert

The following sections introduce these parts.

Custom Services
A custom service is an application or program that is called by ECXpert to
perform a specific task, such as moving a document to a directory outside of
ECXpert’s control, sending e-mail to a user when a document is sent or
received, or preprocessing or translating a file in a custom way.

The chapter “Creating a Custom Service” on page 29 specifies language require-
ments and calling conventions for implementing a custom service. The chapter
also includes examples, which are written in Perl.

User-Defined Communications Service
A user-defined communications service is an application or program that is
called by ECXpert to deliver files after ECXpert has finished processing them.

The chapter “Creating a User-defined Communications Service” on page 43
explains how to implement a user-defined communications service.

ECXpert API
The ECXpert APIs allow you to manipulate the database outside of ECXpert.
You can manipulate database records in the following ways:

• add, retrieve, delete, and update membership records

• add, retrieve, and delete address records
20 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 ECXpert API
• add, retrieve, and change partnership-related records

• retrieve document records

• retrieve tracking records

• add log records

In addition, the API allows you to submit files for processing by ECXpert.

The API is available for C++. The chapters that describe the classes in the API
show C++ syntax and examples. Chapter 4, “Using the NAS ECXpert Submit
Extension” on page 51 describes the Java Submit API.

Use the SparkWorks C++ compiler, version 4.1 to compile the ECXpert SDK.

Important Changes to the ECXpert 2.0 SDK have made following classes backwards
incompatible:

• EcxDocument

• EcxLog

• EcxPartnership

• EcxSubmit

• EcxTracking

You must to rewrite any code you have written with these classes to reflect the
changes that have been made since the ECXpert 1.1.1 SDK. If you do not
rewrite your code, it will not compile.

Additionally, the following classes are new with ECXpert 2.0:

• EcxFtpClient()

• EcxService()

• EcxServiceList()

Special LDAP
Entry in ecx.ini

File

If you have LDAP enabled with ECXpert, in the [LDAP] section of the ecx.ini
file, set the cn parameter to ECX before you start using the ECXpert API. No
harm is done if you fail to do this, but some false error messages may appear
when listing members using the SDK API.
02 July 99 Chapter 1, Introducing the ECXpert Software Developer’s Kit 21

ECXpert API
Class Library

Most classes descend from the EcxBase class, which defines the error-
handling that is available in the class library.

The following table provides a brief description of the classes:

Table 1.1

Class Defines
Page
No.

EcxAddresses Trading address records. 158

EcxBase Base class for SDK. 102

EcxDocID A document by its key. 231

EcxDocument Documents sent to ECXpert. 214

EcxFtpClient FTP Client API to send and receive documents via
FTP

263

EcxInit An initialization object. 108

EcxLog Log records. 252

EcxLogin User-login objects. 128

EcxMember Membership records 134

EcxPartnerID A partnership by its key. 209

EcxPartnership Partnership view-related records. 166

EcxService Service records. 275

EcxServiceList Service list records. 291

EcxSubmit Submission objects. 112

EcxTracking Documents sent from ECXpert. 236
22 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 ECXpert API
Relationship Between Objects and
Database Records

The following table shows classes whose objects each represent a record in a
database table:

Note that objects of the EcxDocument and EcxTracking classes represent
the same kind of records. Objects of the EcxDocument class represent
documents that have been sent to ECXpert. Objects of the EcxTracking class
represent documents that you have sent using ECXpert.

Database Access

Before you can use an object of any SDK class, you must create a single
EcxInit object. Typically, you create the EcxInit object in your program’s
main() function.

To access a record in the database or to add a record to the database, you must

Table 1.2

Class Record in Table
Described
on page

EcxAddresses MBAddresses 365

EcxDocument TrkDoc 388

EcxLog EventLog 398

EcxMember Members 363

EcxPartnership Partnership view from the following tables:

Partnerships 366

PNDocs 368

PNGroup 372

PNStd 373

EcxTracking TrkDoc 388
02 July 99 Chapter 1, Introducing the ECXpert Software Developer’s Kit 23

ECXpert API
1. create an object that corresponds to the kind of record you want to manip-
ulate and

2. associate the object with an EcxLogin object.

The EcxLogin object specifies the user who is allowed to access the record. In
most cases, only users who are also administrators can add, change, or delete
records. Non-administrators can retrieve their own records; administrators can
retrieve any record.

When you access an object’s field, you are only accessing the in-memory value
for the field. The record in the database remains unchanged.

Using Lists

Most classes provide a List() method that you can use to retrieve records
that match a specific criteria. When you call the List() method, the first
record that matches the criteria is associated with the object and the record’s
fields populate the object. You call the Next() method to retrieve the next
record in the list; the newly retrieved record’s fields replace the previous values
in the object. You call the More() method to determine if there are more
records in the list and, if desired, to count the remaining records. You can call
the Clear() method to reset the list. Calling the Clear() method also disas-
sociates the object with all records.

Error Handling

Methods that access the database may set result codes that you can access by
calling the object’s Errnum() method. You can also call the object’s
ErrMsg() method to determine and, perhaps, display the cause. The
following codes are defined by the SDK:

Result Value Description

noError 0 No error occurred.

unknownError 1 An unspecified error occurred.

logicError 2 Internal error.
24 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 ECXpert API
In addition to the error codes defined by the SDK, additional errors codes can
be returned from the underlying database access functions. Database error
codes are in the range of 501 to 606, inclusive.

notImplemented 3 Internal error.

invalidArgument 4 A required argument is missing or an argument
contains invalid data or improperly formatted data.

outOfMem 5 Insufficient memory to create an object.

argumentOutOfRange 6 An argument contains data that is not within the
allowable range of values.

uninitializedData 12 An object has not been completely set up. For
example, this error occurs if you attempt to use an
EcxLogin object that is not associated with a
valid user.

invalidValue 13 Invalid value.

invalidData 17 Invalid date.

notFoundErr 21 Record not found.

invalidRequest 22 An action was attempted for which you do not
have permission; for example, when a non-
administrator attempts an action that can only be
performed by an administrator.

missingData 27 Missing data.

securityException 60000 An action was attempted for which you do not
have permission; for example, when a non-
administrator attempts an action that can only be
performed by an administrator.

invalidLogin 60001 Invalid login.
02 July 99 Chapter 1, Introducing the ECXpert Software Developer’s Kit 25

ECXpert API
Oracle Warnings When Compiling the
ECXpert SDK

If you are using Oracle8, release 8.0.4 or Oracle7, release 7.3.3.5, you will see a
series of warning messages when you compile the ECXpert SDK. These
warning messages appear to have no affect on the resulting compiled
executable.

Note If you are using Oracle7, release 7.3.4, you will not see these warning
messages.

If you are using Oracle8, release 8.0.4, when you compile the ECXpert SDK you
will see a series of warning messages, of which the first three should be similar
to the following:

ld: warning: symbol ‘osnttc’ has differing sizes:
(file /export2/actraadm/NS-apps/ECXpert/lib/libecxsdkdb10.so value=0x4c; file
/export2/oracle/product/8.0.4/lib/libclntsh.so value=0x74);
/export2/actraadm/NS-apps/ECXpert/lib/libecxsdkdb10.so definition taken
ld: warning: symbol ‘nstrcarray’ has differing sizes:
(file /export2/actraadm/NS-apps/ECXpert/lib/libecxsdkdb10.so value=0xce4; file
/export2/oracle/product/8.0.4/lib/libclntsh.so value=0xde0);
/export2/actraadm/NS-apps/ECXpert/lib/libecxsdkdb10.so definition taken
ld: warning: symbol ‘nnfgtable’ has differing sizes:

If you are using Oracle7, release 7.3.3.5, when you compile the ECXpert SDK
you will see a series of warning messages, of which the first three should be
similar to the following:

ld: warning: symbol ‘nnfgtable’ has differing sizes:
(file /disk1/actraadm/install1/NS-apps/ECXpert/lib/libecxsdkdb10.so value=0x30;
file /disk1/oracle7/wg7322/lib/libclntsh.so value=0x40);
/disk1/actraadm/install1/NS-apps/ECXpert/lib/libecxsdkdb10.so definition taken
ld: warning: symbol ‘nls_global_lock’ has differing sizes:
(file /disk1/actraadm/install1/NS-apps/ECXpert/lib/libecxsdkdb10.so value=0x20;
file /disk1/oracle7/wg7322/lib/libclntsh.so value=0x28);
/disk1/oracle7/wg7322/lib/libclntsh.so definition taken
ld: warning: symbol ‘nlstdgbl’ has differing sizes:
(file /disk1/actraadm/install1/NS-apps/ECXpert/lib/libecxsdkdb10.so value=0x148;
file /disk1/oracle7/wg7322/lib/libclntsh.so value=0x178);
/disk1/oracle7/wg7322/lib/libclntsh.so definition taken
26 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Custom Reports
Custom Reports
ECXpert includes the Actuate Reporting System, which you can use create
custom reports. These reports access the ECXpert database directly using the
Select statement you specify to select records for your report. For information
about how to create custom reports, see “Customizing Reports” on page 307.
For information about the database schema that you use to specify the selection
criteria, see “ECXpert Database Schema” on page 347.
02 July 99 Chapter 1, Introducing the ECXpert Software Developer’s Kit 27

Custom Reports
28 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

2
Creating a Custom Service
his chapter describes how to write a program or script that you want to
install as a custom service. The following topics are covered:

• Overview

• Language Requirements

• Call and Return Conventions

• Custom Service Examples

T

02 July 99 Chapter 2, Creating a Custom Service 29

Overview
Overview
A service list may include custom services. A custom service is an application
or program that is called by ECXpert to perform a specific task. Examples of
these tasks include:

• moving a document to a directory outside of ECXpert’s control

• sending e-mail to a user when a document is sent or received

• preprocessing or translating a file in a custom way

The following sections specify languages that you can use to implement a
custom service, the conventions that ECXpert follows to call your service, and
the conventions your service must follow when it returns. Several examples,
written in Perl, are provided to show how your program can receive and use
parameters passed to your service from ECXpert.

Language Requirements
Most custom services are written in compiled languages, such as C or C++, or in
scripting languages, such as csh, sh, or Perl. You can use any language that has
the following capabilities:

• accepts arguments from the command line

• supports file I/O

Because many languages provide these capabilities, your choice of the
language is most likely determined by the language’s suitablity to the task, its
ease of use, and site standards.

Windows NT Under Windows NT 4.0, the custom service may not be a batch file. A simple
workaround is to use a Perl script. This is not an ECXpert limitation; NT 4.0
does not allow a background process like the ECXpert Dispatcher to start up an
executable that opens a foreground window. Starting up a batch file momen-
tarily opens a DOS window.
30 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Call and Return Conventions
Call and Return Conventions
A program that implements a custom service must follow ECXpert’s conven-
tions for argument passing when the program is invoked. It must also follow
ECXpert’s conventions for returning from the program on termination.

When ECXpert calls a custom service it passes three arguments to the service.
The first argument is the full path name of a file that contains parameters that
control the operation of the service. This file is called the parameter
-specification file. The second argument is the full path name of a file that
contains the files on which the service executes. This file is called the
data-specification file. The third argument is the full path name of a file that
contains data to be passed from each custom service in a service list to subse-
quent custom services in the same service list. This file is called the custom
parameter file. The parameter-specification and data-specification files are
discussed in the following sections.

When the service returns, it must return a value of 0 if it performed all opera-
tions successfully. The service may return any non-zero value to indicate that
one or more operations did not succeed.

Warning If your custom service returns a non-zero value, ECXpert stops processing the
service list. You can view the status of the service and the service list by
checking the Event log in Activity Tracking.

The Parameter-specification File

When ECXpert calls your custom service, it passes the service a parameter-
specification file as the service’s first argument. This file contains the parameters
that may be used by the service. These parameters include the sender and
receiver’s member IDs, the file type and path name of the document file. Each
parameter is identified by a two-letter keyword. Table 2.1 shows the keywords
and their descriptions

Table 2.1 Keyword parameters

Keyword Usage

SE Member ID of the sender.

RE Member ID of the sender recipient.
02 July 99 Chapter 2, Creating a Custom Service 31

Call and Return Conventions
The keyword is separated from the parameter’s value by an equal sign. Only
one keyword-value pair can appear on a single line in the parameter-specifi-
cation file. Keyword-value pairs can appear in any order within the file. Your
service must be able to handle all pairs, in any order, even if your program just
ignores the parameter. It must also be robust enough to handle missing
keyword-value pairs.

The following example shows the contents of a parameter-specification file.

TI=20
SE=Dante
RE=Dash
FN=/export/home/actraadm/actra-home/Actra-apps/ECXpert/tmp/track/trk20
FT=EDI

In this example, the tracking ID is 20, the sender is Dante, the receiver is Dash,
the file name is /export/home/actraadm/actra-home/Actra-apps/ECXpert/tmp/
track/trk20, and the file type is EDI.

The Data-specification File

The data-specification file contains the files that ECXpert generates as part of its
translation process. For example, the data-specification file may contain files
such as these:

/export/home/actraadm/.../Actra-apps/ECXpert/data/output/20-1-1-2.out2
/export/home/actraadm/.../Actra-apps/ECXpert/data/output/20-1-1-2.out3
/export/home/actraadm/.../Actra-apps/ECXpert/data/output/20-1-1-1.out2
...
/export/home/actraadm/.../Actra-apps/ECXpert/data/output/20-1-1-8.out3
/export/home/actraadm/.../Actra-apps/ECXpert/data/output/20-1-1.997

FN The full path name of the file.

FT The type of the file.

TI The file’s tracking ID.

Table 2.1 Keyword parameters

Keyword Usage
32 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Call and Return Conventions
The Custom Parameter File

In earlier versions of ECXpert, when ECXpert called a custom service it passed
only the parameter-specification file and the data-specification file.

In Netscape ECXpert Version 2.0, a new argument has been added—the full
path name of a file that contains data to be passed from any custom service in
a service list to subsequent custom services in the same service list. This file is
called the custom parameter file. As the custom parameter file passes through
the service list, it can be edited by any custom service in the service list.

The custom parameter file is automatically deleted upon completion of the
service list.

Example In Figure 2.1, a service list calls Custom Service A. Custom Service A then
passes the three parameters—the Parameter-specification filename, the Data-
specification filename, and the Custom Parameter filename—to Custom Service
B, and writes information to the Custom Service Parameter File. Custom Service
B reads the information from the the Custom Service Parameter File, and then
exits the service list. When the service list is exited, a log file is created.
02 July 99 Chapter 2, Creating a Custom Service 33

Call and Return Conventions
Figure 2.1 Custom Parameter File Diagram

Example Write
Script

Following is an example of a script that writes information to the Custom
Parameter File. In the Figure 2.1, this script is would be used by Custom Service
A to write information to the Custom Parameter File:

#!/usr/local/tools/bin/perl
#
File: customSvr_Write.pl
#
Custom service for ECXpert
#
Description:
This program test out the custom service for ECXpert. It
basically print out to a log file the parameters received
from ECXpert when the custom sevice is invoked.
#

Service
List

Custom
Service

writes

Custom
Parameter
File

A

Custom
Service
B

reads

log
file

Exit

ARGV[0]

ARGV[1]
ARGV[2]

= Parameter-specification File
= Data-specification File
= Custom Parameter File

Passes:
ARGV[0]

ARGV[1]
ARGV[2]
34 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Call and Return Conventions
In addition to printing out the parameters, it also write
a few lines to the custom service file (argv 3) being
passed in by dispatcher. In v2.0 of ECXpert, it supports
a 3rd parameter file to allow passing of information between
2 custom services.
#
#
$logFIle = pathname of the log file for this service to output
#
$logFile = "/tmp/customSvr.dbg";

$paramFile = $ARGV[0];
$dataFile = $ARGV[1];
$customFile = $ARGV[2];

open(LOGF, ">>$logFile") || die "Can’t open log file\n";
print LOGF "--------- Custom_Write Service Start ---------\n";
printTimeToLog();
print basic file argument
print LOGF "Parameter File (0): $paramFile\n";
print LOGF "Data File (1): $dataFile\n";
print LOGF "Custome File (2): $customFile\n";

print additional argument if exist
foreach $i (3 .. $#ARGV) {

print LOGF "additional argument ($i) : $ARGV[$i] \n";
}

print LOGF "\n";

print LOGF ">>> Parameter File Content:\n";
printAsciiFile($paramFile);
print LOGF ">>> Data File Content:\n";
printAsciiFile($dataFile);
print LOGF ">>> Custom File Content:\n";
printAsciiFile($customFile);

print LOGF ">>> End File Content\n";

print LOGF "\n";
print LOGF ">>> Writing to Custom File\n";
writeAsciiData($customFile, 1, 2);
print LOGF ">>> Finish Write\n";

print LOGF ">>> New Custom File Content:\n";
printAsciiFile($customFile);
print LOGF ">>> End File Content\n";

print LOGF "--------- Custom_Write Service End ---------\n";
close(LOGF);
0;
02 July 99 Chapter 2, Creating a Custom Service 35

Call and Return Conventions
############################
Subroutines
############################
sub printTimeToLog {
local($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
localtime(time());
$mon += 1;
print LOGF "Time : $mon/$mday/$year $hour:$min:$sec\n";
}

sub printAsciiFile {
local($dataFileName) = @_[0];
open(DATAFILE, "$dataFileName");
while (<DATAFILE>) {

$lineData = $_;
print LOGF $lineData;

}
close(DATAFILE);

}
sub writeAsciiData{

(my $outFileName, $arg1, $arg2) = @_;
open(DATAFILE, ">>$outFileName") || die "Can’t open custom data

file\n";
print DATAFILE "argument 1 = $arg1\n";
print DATAFILE "argument 2 = $arg2\n";
close(DATAFILE);

}Output File

Example Read
Script

Following is an example of a script that reads information from the Custom
Parameter File. In the Figure 2.1, this script is would be used by Custom Service
B to read the Custom Parameter File:

#!/usr/local/tools/bin/perl
#
File: customSvr.pl
#
Custom service for ECXpert
#
Description:
This program test out the custom service for ECXpert. It
basically print outs to a log file the parameters received
from ECXpert when the custom sevice is invoked.
#
$logFIle = pathname of the log file for this service to output
#
$logFile = "/tmp/customSvr.dbg";

$paramFile = $ARGV[0];
$dataFile = $ARGV[1];
36 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Call and Return Conventions
$customFile = $ARGV[2];

open(LOGF, ">>$logFile") || die "Can’t open log file\n";
print LOGF "--------- Custom Service Start ---------\n";
printTimeToLog();

print basic file argument
print LOGF "Parameter File (0): $paramFile\n";
print LOGF "Data File (1): $dataFile\n";
print LOGF "Custome File (2): $customFile\n";

print additional argument if exist
foreach $i (3 .. $#ARGV) {

print LOGF "additional argument ($i) : $ARGV[$i] \n";
}

print LOGF "\n";

print LOGF ">>> Parameter File Content:\n";
printAsciiFile($paramFile);
print LOGF ">>> Data File Content:\n";
printAsciiFile($dataFile);
print LOGF ">>> Custom File Content:\n";
printAsciiFile($customFile);
print LOGF ">>> End File Content\n";

print LOGF "--------- Custom Service End ---------\n";
close(LOGF);
0;

############################
Subroutines
############################
sub printTimeToLog {
local($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
localtime(time());
$mon += 1;
print LOGF "Time : $mon/$mday/$year $hour:$min:$sec\n";
}

sub printAsciiFile {
local($dataFileName) = @_[0];
open(DATAFILE, "$dataFileName");
while (<DATAFILE>) {

chop($_);
$lineData = $_;
print LOGF $lineData;

}
close(DATAFILE);

}

02 July 99 Chapter 2, Creating a Custom Service 37

Call and Return Conventions
Example Log File Following is an example of the log file—/tmp/customSvr.dbg—that would be
created. In the Figure 2.1, this file would be generated when the service list is
exited.

--------- Custom_Write Service Start ---------
Time : 10/23/98 13:5:7
Parameter File (0): /disk1/actraadm/install1/NS-apps/ECXpert/data/work
ENVAAAa006zq-28657-0
Data File (1): /disk1/actraadm/install1/NS-apps/ECXpert/data/work
LSTBAAa006zq-28657-0
Custome File (2): /disk1/actraadm/install1/NS-apps/ECXpert/data/work
ARGCAAa006zq-28657-946

>>> Parameter File Content:
TI=946
SE=rav4
RE=escort
FN=/disk1/actraadm/install1/NS-apps/ECXpert/data/work/trk/trk946
FT=custom
RV=0
>>> Data File Content:
>>> Custom File Content:
>>> End File Content

>>> Writing to Custom File
>>> Finish Write
>>> New Custom File Content:
argument 1 = 1
argument 2 = 2
>>> End File Content
--------- Custom_Write Service End ---------
--------- Custom Service Start ---------
Time : 10/23/98 13:5:8
Parameter File (0): /disk1/actraadm/install1/NS-apps/ECXpert/data/work
ENVDAAa006zr-28657-0
Data File (1): /disk1/actraadm/install1/NS-apps/ECXpert/data/work
LSTEAAa006zr-28657-0
Custome File (2): /disk1/actraadm/install1/NS-apps/ECXpert/data/work
ARGCAAa006zq-28657-946

>>> Parameter File Content:
TI=946
SE=rav4
RE=escort
FN=/disk1/actraadm/install1/NS-apps/ECXpert/data/work/trk/trk946
FT=custom
RV=0
>>> Data File Content:
>>> Custom File Content:
argument 1 = 1
38 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Custom Service Examples
argument 2 = 2
>>> End File Content
--------- Custom Service End ---------

Custom Service Examples
Your custom service can be divided into a function that parses command line
arguments and functions that perform the logic you want to implement. The
following examples show a Perl function that handles the command line and
Perl scripts that implement two services, a file-copy service and a submission
service.

Parsing Command Line Arguments

The following function parses the command line arguments. The function
opens the file specified in the first argument and decodes the keyword
arguments. It then opens the file specified in the second argument and creates
a list of file names. This function is called by the scripts that implement
services.

#!/usr/local/bin/perl

This function is designed to be called by a script acting as
a service within a service list of ECXpert. It takes two parameters.
The first parameter is expected to be a filename pointing to a file
that contains submission information. The second parameter is a
filename that points to a file containing a list of filenames
that have been unbundled (possibly via translation) by ECXpert.
#
The function places the parsed values from the first file into an
associative array called svcArgs. The keys into the array are:
#
sender - the sender of the document
receiver - the receiver of the document
trackingID - the tracking id assigned to this document
fileName - the filename
fileType - the type of the file
#
The function places the file names from the second argument into
an array called svcFiles.

sub ServiceArgsParse() {
02 July 99 Chapter 2, Creating a Custom Service 39

Custom Service Examples
 local(@argv) = @_;

 # This section of code opens the file pointed to by the first
 # parameter and parses out the information.
 open(META, $argv[0]) || die "\nError opening file $argv[0]\n";

 while (<META>) {
 chop($_);

if (/^TI=(.*)/) { $svcArgs{trackingID} = $1; }
if (/^SE=(.*)/) { $svcArgs{sender} = $1; }
if (/^RE=(.*)/) { $svcArgs{receiver} = $1; }
if (/^FN=(.*)/) { $svcArgs{fileName} = $1; }
if (/^FT=(.*)/) { $svcArgs{fileType} = $1; }

 close(META);

 # This section of code opens the file pointed to by the second
 # parameter and places each file as an element in an array.

 open(FILELIST, $argv[1]) || die "\nError opening file $argv[1]\n";

 @svcFiles = <FILELIST>;
 chop(@svcFiles);

 close(FILELIST);
}
1;

Note that Perl requires a non-zero return as the last line of a file that is required
by, meaning included in, another file.

Implementing a File-copy Service

The following script implements a file-copy service. The contents of files in the
data-specification file are appended together and their output is separated by a
delimiter. The first argument is not used except for printing the keyword values
as the first line of the output file.

#!/usr/local/bin/perl

This script copies files from ECXpert to a directory. It may be
customized by modifying the following variables:
#
$targetDirectory - full path to the directory where the files should
be copied.
$delimeter - the delimiter to be used between concatenated
files
40 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Custom Service Examples
$additionalInfo - if defined, will place the value of the variable
as the first line of the file.

$ACTRA_HOME = "/export/home/actraadm/actra-home";
$ECX_HOME = "$ACTRA_HOME/Actra-apps/ECXpert";

require "$ECX_HOME/custom-services/ServiceArgsParse.pl";

&ServiceArgsParse(@ARGV);

######################################
begin user customizable variables
######################################

$targetDirectory = "/tmp";
$delimeter = "--ECXpert--";
$additionalInfo = "<SE>$svcArgs{sender}</SE>

<RE>$svcArgs{receiver}</RE>"
"<TI>$svcArgs{trackingID}</TI>";

###################################
end user customizable variables
###################################

$targetFile = $targetDirectory . "/ECX-$svcArgs{trackingID}.dat";
open(COPYFILE, ">$targetFile") || die "\nError opening $targetFile\n";

if ($additionalInfo) {
 print COPYFILE "$additionalInfo\n";
}

$arrayLength = scalar(@svcFiles);
$i = 0;
foreach $file (@svcFiles) {
 $i++;
 open(EACHFILE, $file) || die "\nError opening $file\n";
 print COPYFILE <EACHFILE>;
 close(EACHFILE);

 print COPYFILE "$delimeter\n" if ($i < $arrayLength);
}

close(COPYFILE);

exit 0;

Note that a custom service must return 0 to indicate that it succeeded.
02 July 99 Chapter 2, Creating a Custom Service 41

Custom Service Examples
Implementing a Submission Service

The following section implements a submission service. For example, if a file
has been submitted to ECXpert, this custom service resumbmits it, effectively
forwarding it to another recipient. In this example, all submissions are resub-
mitted to member ID “Dart.”

#!/usr/local/bin/perl

This script kicks off another submission using information passed in
from ECXpert and the variables defined below that should be customized
for specific recipients:
#
$targetRecipient - member id where the document should be
forwarded to

$ACTRA_HOME = "/export/home/actraadm/actra-home";
$ECX_HOME = "$ACTRA_HOME/Actra-apps/ECXpert";

require "$ECX_HOME/custom-services/ServiceArgsParse.pl";

&ServiceArgsParse(@ARGV);

######################################
begin user customizable variables
######################################

$targetRecipient = "Dart";

####################################
end user customizable variables
####################################

$command = "$ECX_HOME/bin/submit -se $svcArgs{receiver} ";
$command .= "-re $targetRecipient -fn $svcArgs{fileName} ";
$command .= "-ft $svcArgs{fileType} -in $ECX_HOME/config/bdg.ini";

system($command);

exit 0;
42 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

3
Creating a User-defined

Communications Service

 his chapter describes how to write a program or script that you want to
install as a user-defined communications service. The following topics are

covered:

• Overview

• Modifying the Configuration File (ecx.ini)

• Writing a User-defined Communications Service

T

02 July 99 Chapter 3, Creating a User-defined Communications Service 43

Overview
Overview
A user-defined communications service is an application or program that is
called by ECXpert to deliver files after ECXpert has finished processing them.
ECXpert provides the following delivery methods for data:

• SMTP

• FTP

• GEIS FTP

• HTTP

You can provide a user-defined communications service to implement other
kinds of disposition methods.

Typically, a user-defined communications service operates on documents that
have been bundled into an interchange and are ready for delivery to an
external system or it operates on application data ready to be transmitted to
another internal host. Examples of tasks performed by a user-defined communi-
cations service include sending files via an in-house file transfer utility or
submitting the output from ECXpert into a PeopleSoft system.

You implement a user-defined communications service in two parts:

• Modify the configuration file to specify the location of the executable file,
titles for the service and its parameters, and to specify other configuration
information. ECXpert uses this specification to allow an administrator to set
up the service on the Trading Partnership Protocol screen.

• Write the service using a compiled language, such as C or C++, or a
scripting language, such as csh, sh, or Perl. The language must accept
arguments from the command line and support file I/O.

Windows NT Under Windows NT 4.0, the user-defined communications service may not be a
batch file. A simple workaround is to use a Perl script. This is not an ECXpert
limitation; NT 4.0 does not allow a background process like the ECXpert
Dispatcher to start up an executable that opens a foreground window. Starting
up a batch file momentarily opens a DOS window.

The following sections show you how to modify your configuration file and
write the service.
44 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Modifying the Configuration File (ecx.ini)
Modifying the Configuration File (ecx.ini)
The ecx.ini configuration file defines how ECXpert initiates the communica-
tions service. You must set up a user-defined communications section, as
discussed in “User-defined communications sections” on page 249. Below is a
sample user-defined communications section ecx.ini.

[user-defined-1]
section_type = network
type = process
cmd_and_args = /var/tmp/CopyToServer.sh
append_data_file = 1
prefix_data_file =
cmd_type = script
operation = send
data_type = Both
is_comm_agent = yes
internal_name = USER DEFINED 1
visible_name = Copy To Server
parameter_name_1 = Destination Directory:
parameter_name_2 = Destination File Pattern:
parameter_name_3 = User:
parameter_name_4 = Host:

In this example, ECXpert calls CopyToServer in the /var/tmp/ directory to copy
application data. ECXpert appends the bundle file’s full path name when it calls
the script. The following table explains each line in the configuration file:

Table 3.1

Line Description

[user-defined-1] A section name. The default is user-defined-1.

section_type=network Type of section; must be network.

type=process Type of executable; must be process.
02 July 99 Chapter 3, Creating a User-defined Communications Service 45

Modifying the Configuration File (ecx.ini)
cmd_and_args=/var/tmp/
CopyToServer.sh

Full path to the executable for the user-defined com-
munication service and arguments, entered exactly as
you would enter them from the OS command line. In
this example, CopyToServer is not invoked with argu-
ments other than those passed as parameters.

The syntax for this line is as follows: (note that this
should appear all on one line in the ecx.ini file)

cmd_and_args=<pathname?
<static_arguments> <data_filename>
<partnership_defined_arguments>

Static arguments are hard-coded arguments, and part-
nership-defined arguments are arguments you can set
up via the partnership pages.

append_data_file=1 Whether to append the name of the data file to the end
of the cmd_and_args line and the trading partner-
ship parameters. In this case, CopyToServer expects
the data file name to be appended.

prefix_data_file= Prefix to add to the file name passed to the user-
defined communications service, for example fname=.
The bundle file name will be concatenated with the
prefix. In this example, no prefix is specified.

cmd_type = script Type of command, valid values: script (default), or
executable. In this case, CopyToServer is a script.

operation = send Type of communications operation involved. In this
example, the service sends data.

data_type = Both Format of the data in the bundle. In this example, the
service sends data in an both EDI and application-spe-
cific format.

is_comm_agent = yes Whether the protocol can be selected as a communica-
tions agent; must be yes.

internal_name
= USER DEFINED 1

The internal name that identifies the service. Do not
change this value. If you do, the service will not work.

Table 3.1

Line Description
46 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Modifying the Configuration File (ecx.ini)
The CopyToServer.sh script that is executed by this sample user-defined
communications service is shown below.

#! /bin/sh

#
Copy the file
#

retval=0
directory=${1}
pattern=${2}
remoteuser=${3}
remotehost=${4}
bundlefile=${5}

suffix="‘echo $bundlefile | sed -e ’s/^.*bndl//’‘"

/bin/rcp ${bundlefile}
${remoteuser}@${remotehost}:${directory}/${pattern}.${suffix} \
 2>> /tmp/edi/id.log

if ["$?" != "0"]
then
 retval=‘expr ${retval} +1‘
fi

visible_name
= Copy To Server

Title that appears as a Primary Outgoing Protocol on
the Trading Partnership Protocol screen. In this exam-
ple, it is “Copy to Server.”

parameter_name_1
= Destination Directory:

Title for the first parameter. In this example, the first
parameter specifies the name of the destination direc-
tory on the server.

parameter_name_2
= Destination File Pattern:

Title for the second parameter. In this example, the
second parameter specifies the destination file pattern
on the server.

parameter_name_3
= User:

Title for the third parameter. In this example, the third
parameter specifies the name of the user on the server.

parameter_name_4
= Host:

Title for the fourth parameter. In this example, the
fourth parameter specifies the server.

Table 3.1

Line Description
02 July 99 Chapter 3, Creating a User-defined Communications Service 47

Modifying the Configuration File (ecx.ini)
done
#
exit ${retval}

Important Notes Keep the following in mind when using this example to implement a user-
defined communications service:

• Do not add spaces between the variable names and their assignment
values. For example, this assignment works:

fname=${1}

while the one below does not:

fname = ${1}

• Any recipient user must have a file named .rhosts (e.g.,. /u/member2/.rhosts)
containing the following information:

hostname user

If actraadm is the user, quasar is the host, and member2 is a recipient
user for the CopyToServer.sh script, then member2 would need to have a
file named /u/member2/.rhosts containing the following:

quasar actraadm

Remember to include a domain suffix with the hostname (e.g.,
quasar.actracorp.com) if the recipient’s machine is in a different
domain.

• ECXpert, when running your script, will source the .cshrc file in the remote
directory, not in the local directory. It is necessary to have lines similar to
the following near the beginning of the .cshrc file in the remote directory to
ensure proper execution.

#
Generic .cshrc
#

Set up a basic path here in case the script bombs out
setenv PATH /bin:/sbin:/usr/bin:/usr/sbin

Set umask
umask 022

Skip rest of setup if not an interactive shell
if ($?prompt == 0) exit
if ("$prompt" == "") exit
48 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Writing a User-defined Communications Service
Writing a User-defined Communications
Service

The user-defined communications service accepts values for the parameters and
performs the specified task. The parameters are identified by their position as
they are passed to the service. This order is defined as follows:

1. parameters specified in the cmd_and_args entry in its section of the
configuration file, in the order that they are listed in the entry

2. parameters specified in the configuration file, in order from
parameter_name_1 to parameter_name_n, where n is the last
parameter in its section of the configuration file

3. the bundle file name if the append_data_file entry in its section of the
configuration file is set to 1

The following shell script is an example of a user-defined communications
service. It sets the return value to 0 to indicate success, retrieves the parameters
that the administrator specified when setting up the protocol, and performs the
copy operation. The parameters are

1. destination file

2. user ID

3. host name

4. full path name of the bundled file

#!/bin/sh

#
Copy the file.
#
retval= 0
fname = ${1}
remoteuser = ${2}
remotehost = ${3}
bundlefile = ${4}
rdist -b -c ${bundlefile} ${remoteuser}@${remotehost}:/tmp/${fname} \

> /tmp/edi/id.log
if ["$?" != "0"]
then
02 July 99 Chapter 3, Creating a User-defined Communications Service 49

Writing a User-defined Communications Service
retval=‘expr ${retval} + 1‘
fi
done.
#
exit ${retval}

When the service returns, it must return a value of 0 if it performed all opera-
tions successfully. The service may return any non-zero value to indicate that
one or more operations did not succeed. If an error occurs, check the Event
log; the error number is in the log.

Warning If your custom service returns a non-zero value, ECXpert stops processing the
service list.
50 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

4
Using the NAS ECXpert Submit

Extension
his chapter describes the NAS ECXpert extension, and explains how to
use the NAS ECXpert submit extension.

This chapter contains the following sections:

• About the NAS ECXpert Extension

• NAS ECXpert Extension Interfaces

• Using the NAS ECXpert Submit Extension

T

02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 51

About the NAS ECXpert Extension
About the NAS ECXpert Extension
The NAS extension of ECXpert contains Java interfaces to ECXpert objects such
as member, member address, partnership, document, tracking, log, service,
service list, and submission. The extension is written in C++ with a Java
wrapper, so that a developer may design Java application logic to directly make
use of the extension to interface with the APIs in the ECXpert Software
Developer’s Kit (SDK).

Note to C++
programmers

An interface in Java functions exactly as a class in C++.

The interfaces and methods in the extension have an almost one-to-one
mapping to the classes and methods in the ECXpert SDK. Through this
extension, most of the ECXpert functionalitiy is exposed to any developer who
wishes to design applications using ECXpert as a platform. For example, it is
possible to use the NAS ECXpert extension to administer user and partnership
profiles, define services and service lists, submit documents into ECXpert and
track its workflow.

Figure 0.1 Interaction with ECXpert

Note The Java classes wrap around the C++ interfaces.

AppLogic

NAS ECXpert

 Ja
va

 W
ra

p

 C

++

 S

D
K

ECXpert
Extension
52 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 NAS ECXpert Extension Interfaces
NAS ECXpert Extension Interfaces
The following fourteen NAS ECXpert extension interfaces are available:

This document explains only the NAS ECXpert submit extension in detail. For
more information about other functionality available via the NAS ECXpert API,
refer to the Netscape TradingXpert Getting Started Guide, version 2.0.

Using the NAS ECXpert Submit Extension
The IEcxSubmit Interface defines methods that you use to submit a file to
ECXpert. You may use these methods to provide a file submission capability
within your application instead of requiring the user to execute a command or
use ECXpert’s HTML interface to submit an object.

You may create objects from the IEcxSubmit Interface and use them, directly
or you may define a subinterface of the IEcxSubmit Interface and create
objects from the derived interface. For example, you might define a
subinterface that handles much of the application logic associated with files to
be submitted to ECXpert. Objects derived from your subinterface would inherit
the ability to submit files to ECXpert.

You call methods to specify this information. For example, you call the object’s
setSender() method to specify the sender’s member ID. You must specify
the files that you wish to submit to ECXpert. You build a submission list by
calling the object’s addFile() method to add a file to the list. You specify the
following information when you add a file:

• Document name

• IEcxAddress • IEcxMgr

• IEcxBase • IEcxPartnerId

• IEcxDocID • IEcxPartnership

• IEcxDocument • IEcxService

• IEcxLog • IEcxServiceList

• IEcxLogin • IEcxSubmit

• IEcxMember • IEcxTracking
02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 53

Using the NAS ECXpert Submit Extension
• Document type, such as EDIFACT or EDIX12, or a non-EDI type

You may add as many files as you want. If you add more than one file, the files
become part of a single multi-part file. When you finish adding the files to the
submission list, you may call the object’s Submit() method to submit the files.

By default, ECXpert moves the files being submitted to the directory specified
by the repository entry in the configuration file’s tcpip-connector section.
Moving a file (copying the file and deleting the source file after copying) is the
most efficient way to submit files if your application executes on the same
server as ECXpert.

You may also submit files to ECXpert using a TCP/IP connection. You specify
whether or not to use a TCP/IP connection when you call the object’s
submit() method. Using a TCP/IP connection causes ECXpert to stream the
contents of the files through a socket to the server. This is a useful technique if
your application runs on a remote computer and the files being submitted are
relatively small. If you want to submit large files from a remote computer, you
should consider using a protocol such as FTP to copy the files to the server and
then submit them from the server.

If you wish to submit files to ECXpert from a remote system, you must:

• Edit the ECXpert system’s ecx.ini file [tcpip-connector] section as
follows:

— port_location=static

— admin_port_type=manual

— admin_port=6001

— listener_port_type=manual

— listener_port=6002

Note For more information on the ecx.ini file, see the ECXpert Site Adminis-
trator’s Handbook.

• Copy the edited ecx.ini file to the /bin directory in the NAS base directory
on the remote machine. This is the same directory where any NAS start-up
scripts are located.

Note If you stream data through a TCP/IP connection, the source file is not deleted
after the data has been streamed to the server.
54 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the NAS ECXpert Submit Extension
After you submit a file, you should check for errors. If no error occurred, you
may call the object’s getFirstTrackingID() method to determine the
tracking ID of the first file submitted and the object’s getNextTrackingID()
method to determine the tracking ID for each additional file in the list.

Warning If the submit() method fails, the value returned by calling the getFirst-
TrackingID() or getNextTrackingID() method is undefined. When you
no longer need references to these files, you may call the object’s clear-
FileList() method to remove the files from the list.

Syntax and Methods
Name IEcxSubmit

Syntax public interface IEcxSubmit extens com.kivasoft.IObject

Methods Following is a list of methods in the IEcxSubmit interface. For additional
details about each method, refer to Chapter 8, “The EcxSubmit Class.”

Methods

public int addFile(java.lang.String pFile,java.lang.String
pFileType)

public int clearFileList()

public java.lang.String getDeliveryMethod()

public java.lang.String getEcxIniFileName()

public int getFirstTrackingID()

public java.lang.String getMapName()

public java.lang.String getPassword()

public java.lang.String getRecipient()

public java.lang.String getSender()

public int getNextTrackingID()

public int setDeliveryMethod(java.lang.String
pDeliveryMethod)

public int setEcxIniFileName(java.lang.String pIniFileName)

public int setMapName(java.lang.String pMapName)
02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 55

Using the NAS ECXpert Submit Extension
Example
WARNING: This is a machine generated list, do not modify below

** WizardDictionaryValues={

** CodeTemplate="/kiva/templates/DoInputWizard.javatmpl",

** CodeFiles="*.java;Session:SessionAccessorInsert.java",

** CodeProject="Input",

** CodeDir="/kiva/APPS/ecx_demo/",

** CodeLanguage="Java",

** SessionOut=[

** "sender"

** "password"

** "recipient"

** "fileName"

** "fileType"

** "ecxIniFileName"

**],

** BaseAgent="ecx_demo.BaseAppLogic",

** CodeWizard="com.kivasoft.wizard.DoInputWizardFactory",

** CodeFile="/kiva/APPS/ecx_demo/Input.java",

** Input_filename="/kiva/APPS/DevXpert/web/ecx_demo/
index.html",

** CodeGUID="{588779da-f69c-15e5-e4e3-080020794ab3}",

** Project="/kiva/APPS/ecx_demo/ecx_demo.gxm",

** ValIn={com.kivasoft.tools.KSVectorHash

** ValIn=[

** "sender"

** "password"

** "recipient"

** "fileName"

public int setPassword(java.lang.String pPassword)

public int setRecipient(java.lang.String pRecipient)

public int setSender(java.lang.String pSender)

public int submit(boolean bDataStreaming)
Note: The bDataStreaming parameter should be “true” if submitting to a remote
ECXpert system.
56 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the NAS ECXpert Submit Extension
** "fileType"

** "ecxIniFileName"

** "remoteSubmission"

**],

** ValIn_NotNull=[

** "true"

** "true"

** "true"

** "true"

** "true"

** "true"

** "true"

**],

** },

** }

** WARNING: This is a machine generated list, do not modify
above

*/

package ecx_demo;

import java.util.*;

import com.kivasoft.*;

import com.kivasoft.applogic.*;

import com.kivasoft.session.*;

import com.kivasoft.types.*;

import com.kivasoft.util.*;

import ecx_demo.Session;

import ecx_demo.BaseAppLogic;

import ecx.*;

public class Input extends ecx_demo.BaseAppLogic

{

 public String guid()

 {
02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 57

Using the NAS ECXpert Submit Extension
 return "{588779da-f69c-15e5-e4e3-080020794ab3}";

 }

 public int execute()

 {

 ecx_demo.Session session = getSessionProxy();

 if (session == null) {

 return result("<HTML>Call to getSessionProxy() failed
in Input</HTML>");

 }

 //

 // Verify correctness of valIn criteria

 //

 String sender = valIn.getValString("sender");

 if (null == sender ||

 0 == sender.trim().length())

 {

 log("Input error on sender");

 return result("<HTML><BODY>sender should not be
null!</BODY></HTML>");

 }

 String password = valIn.getValString("password");

 if (null == password ||

 0 == password.trim().length())

 {

 log("Input error on password");

 return result("<HTML><BODY>password should not be
null!</BODY></HTML>");

 }

 String recipient = valIn.getValString("recipient");

 if (null == recipient ||

 0 == recipient.trim().length())

 {

 log("Input error on recipient");
58 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the NAS ECXpert Submit Extension
 return result("<HTML><BODY>recipient should not be
null!</BODY></HTML>");

 }

 String fileName = valIn.getValString("fileName");

 if (null == fileName ||

 0 == fileName.trim().length())

 {

 log("Input error on fileName");

 return result("<HTML><BODY>fileName should not be
null!</BODY></HTML>");

 }

 String fileType = valIn.getValString("fileType");

 if (null == fileType ||

 0 == fileType.trim().length())

 {

 log("Input error on fileType");

 return result("<HTML><BODY>fileType should not be
null!</BODY></HTML>");

 }

 String ecxIniFileName =
valIn.getValString("ecxIniFileName");

 if (null == ecxIniFileName ||

 0 == ecxIniFileName.trim().length())

 {

 log("Input error on ecxIniFileName");

 return result("<HTML><BODY>ecxIniFileName should not
be null!</BODY></HTML>");

 }

 String remoteSubmission =
valIn.getValString("remoteSubmission");

 if (null == remoteSubmission ||

 0 == remoteSubmission.trim().length())

 {

 log("Input error on remoteSubmission");

 return result("<HTML><BODY>remoteSubmission should
not be null!</BODY></HTML>");
02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 59

Using the NAS ECXpert Submit Extension
 }

 //

 // Save login criteria into the session.

 //

 session.setsender(valIn.getValString("sender"));

 session.setpassword(valIn.getValString("password"));

 session.setrecipient(valIn.getValString("recipient"));

 session.setfileName(valIn.getValString("fileName"));

 session.setfileType(valIn.getValString("fileType"));

session.setecxIniFileName(valIn.getValString("ecxIniFileName"))
;

 session.saveSession();

 // Get the extension

 IEcxMgr ecxMgr = access_cECX.getcECX(context,null,this);

 IEcxSubmit ecxSubmit = ecxMgr.createSubmit();

 System.out.println("Got the extension...");

 ecxSubmit.setSender(sender);

 ecxSubmit.setRecipient(recipient);

 ecxSubmit.setPassword(password);

 ecxSubmit.addFile(fileName, fileType);

 ecxSubmit.setEcxIniFileName(ecxIniFileName);

 System.out.println("Set all parameters...");

 boolean remote;

 if (remoteSubmission.equals("yes"))

 remote = true;

 else

 remote = false;

 ecxSubmit.submit(remote);

 // Return screens

 if (((IEcxBase)ecxSubmit).errnum() == 0)
60 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the NAS ECXpert Submit Extension
 {

 String successString = "Submission successful, the file’s
ECXpert tracking ID is " + ecxSubmit.getFirstTrackingID() + ".";

 return streamResult(successString);

 }

 else

 {

 String errorString = "Submission failed, error number "
+ ((IEcxBase)ecxSubmit).errnum() + ".";

 return streamResult(errorString);

 }

 } // execute

} // class
02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 61

Using the NAS ECXpert Submit Extension
62 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

5
The ECXpert XML SDK
his chapter describes the ECXpert XML software developer kit (SDK). The
following topics are covered:

• Overview

• Directory Structure and Source Files

• CXIP_MSG Class Reference

• CXxsMSG Class Reference

• CXxsDOM Class Reference

• CXIPInit Class Reference

• CXIPConnection Class Reference

• CXIPListener Class Reference

• CXSubmit Class Reference

• Examples

T

02 July 99 Chapter 5, The ECXpert XML SDK 63

Overview
Overview
The ECXpert XML SDK provides a set of C++ Class APIs for users to build appli-
cations communicating with eXML-Connector through XML-formatted
messages. The SDK library also includes APIs to allow user applications to
listen to a port and/or connect to a (host, port) for message exchanges. There
are some samples that illustrate how to build a simple server and client
programs. There is also a utility that allows easy submission of document to the
eXML-Connector.

The eXML-Connector works as another (generic) communications agent in the
ECXpert architecture. In the outbound (with respect to ECXpert) process at the
transportation/Gateway stage, the document details are propagated to the
eXML-Connector by a NSPkt. The eXML-Connector determines what to do with
the document based on the information contained in NSPkt. It translates NSPkt
info. into an XML-formatted message (XFM), and passes it to the specified
service. This service can reside anywhere on the network, and the eXML-
Connector interacts with it using XFM.

In the inbound transaction, any XML-based application can send a submission
or service request to ECXpert, based on XFM. This request is intercepted by the
eXML-Connector, which passes on the ECXpert internals.

Directory Structure and Source Files
The XML SDK directory ($NSBASE/NS-apps/ECXpert/xmlsdk) in the ECXpert
directory tree includes required libraries, header files, and some sample
programs. These are listed in .

Table 5.1 ECXpert XML SDK directory contents

Subdirectory or File Description of Contents

$NSBASE/NS-apps/ECXpert/
bin/xmlsbmt

The utility for use to submit a document to eXML
Connector

xmlsdk The XML SDK root directory

xmlsdk/bin The SDK binary directory

xmlsdk/config The XML SDK configuration directory

xmlsdk/config/xmlserver.ini the configuration file for sample program xmlserver
64 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Directory Structure and Source Files
xmlsdk/example The XML SDK example directory

xmlsdk/example/Make-
file.{platform}

The Makefile sample file

xmlsdk/example/xmlcli-
ent.cpp

The xmlclient sample program

xmlsdk/example/
xmlserver.cpp

The xmlserver sample program

xmlsdk/example/xmlsub-
mit.cpp

The xmlsubmit sample program

xmlsdk/include The XML SDK include directory

xmlsdk/include/cxbase.h XML SDK header file

xmlsdk/include/cxipconn.h XML SDK header file for CXIPConnection class

xmlsdk/include/cxipinit.h XML SDK header file for CXIPInit class

xmlsdk/include/cxiplsnr.h XML SDK header file for CXIPListener class

xmlsdk/include/cxipmsg.h XML SDK header file for CXIP_MSG class

xmlsdk/include/cxsbmt.h XML SDK header file for CXSubmit class

xmlsdk/include/cxtypes.h XML SDK header file

xmlsdk/include/cxxsdom.h XML SDK header file for CXxsDOM class

xmlsdk/include/cxxsmsg.h XML SDK header file for CXxsMSG class

xmlsdk/include/xmlparser The XML SDK xmlparser include directory

xmlsdk/include/xmlparser/
xmlparse.h

The XML SDK xmlparser header file

xmlsdk/lib The XML SDK library directory

xmlsdk/lib/libecxmlcxbase.a XML SDK library file

xmlsdk/lib/libecxmlcxcs.a XML SDK library file

xmlsdk/lib/libecxmlcxsdk.a XML SDK library file

xmlsdk/lib/libecxmlcxus.a XML SDK library file

xmlsdk/lib/libecxmlcxxs.a XML SDK library file

xmlsdk/lib/libecxmlxml.a XML SDK xmlparser library file

Table 5.1 ECXpert XML SDK directory contents (Continued)

Subdirectory or File Description of Contents
02 July 99 Chapter 5, The ECXpert XML SDK 65

CXIP_MSG Class Reference
CXIP_MSG Class Reference
Interface cxipmsg.h

Superclasses CXxsMSG, CXxsDOM

Subclasses None

Syntax class CXIP_MSG : public CXxsMSG { ... };

Constructor and Destructor

CXIP_MSG()

Creates a CXIP_MSG object.

Syntax CXIP_MSG::CXIP_MSG();

Parameters None.

Creates a CXIP_MSG object undefined content.

Syntax CXIP_MSG::CXIP_MSG(const char *doc, const char *dtd =
CXIP_MSG_DTD);

Parameters The CXIP_MSG() method has the following parameters:

Creates a CXIP_MSG object given the document and DTD.

Syntax CXIP_MSG::CXIP_MSG(const char *doc, int opt = 0);

Parameters The CXIP_MSG() method has the following parameters:

doc the document

dtd the dtd, pass "" (empty string) if dtd is already embedded in
document

doc the XML document including needed DTD

opt the option, which can be OR’ed from the following option:

• CXXS_OPT_DELETEDOC - delete the XML message once the
internal DOM object tree is formatted after the parsing
66 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
Creates a CXIP_MSG object given the content from the given object.

Syntax CXIP_MSG::CXIP_MSG(CXIP_MSG& obj);

Parameters The CXIP_MSG() method has the following parameter:

~CXIP_MSG()

Destroys a CXIP_MSG object.

Syntax virtual ~CXIP_MSG();

CXxsMSG Class Reference
Interface cxxsmsg.h

Superclasses CXxsDOM

Subclasses CXIP_MSG

Syntax class CXxsMSG : public CXxsDOM { ... };

Constructor and Destructor

CXxsMSG()

Creates a CXxsMSG object.

Syntax Not intended to be used directly.

~CXxsMSG()

Destroys a CXxsMSG object.

obj the object to copy from
02 July 99 Chapter 5, The ECXpert XML SDK 67

CXxsMSG Class Reference
Syntax Not intended to be used directly.

Methods

This section lists the methods of the CXxsMSG class.

GetMSGTYPE()

Gets the MSGTYPE attribute from the CONTROL section in the CXIP message.

Syntax int CXxsMSG::GetMSGTYPE(char **v, int allocstr = 0);

Parameters The GetMSGTYPE() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetSERVICE()

Gets the SERVICE attribute from the CONTROL section in the CXIP message.

Syntax int CXxsMSG::GetSERVICE(char **v, int allocstr = 0);

Parameters The GetSERVICE() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetTIMEOUT()

Gets the TIMEOUT attribute from the CONTROL section in the CXIP message.

v pointer to the MSGTYPE string pointer

allocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

v pointer to the SERVICE string pointer

allocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data
68 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
Syntax int CXxsMSG::GetTIMEOUT(long *v);

Parameters The GetTIMEOUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetRETRIES()

Gets the RETRIES attribute from the CONTROL section in the CXIP message.

Syntax int CXxsMSG::GetRETRIES(long *v);

Parameters The GetRETRIES() method has the following parameter:

Returns 0 when successful; -1 otherwise.

GetSTATUS()

Gets the STATUS attribute the CONTROL section in from the CXIP message.

Syntax int CXxsMSG::GetSTATUS(long *v);

Parameters The GetSTATUS() method has the following parameter:

Returns 0 when successful; -1 otherwise.

GetSENDER()

Gets the SENDER attribute from the PREDEFINED MONITOR section in the
CXIP message.

v pointer to the TIMEOUT value

allocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

v pointer to the RETRIES value

v pointer to the STATUS value
02 July 99 Chapter 5, The ECXpert XML SDK 69

CXxsMSG Class Reference
Syntax int CXxsMSG::GetSENDER(char **v, int allocstr = 0) ;

Parameters The GetSENDER() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetRECEIVER()

Gets the RECEIVER attribute from the PREDEFINED MONITOR section in the
CXIP message.

Syntax int CXxsMSG::GetRECEIVER(char **v, int allocstr = 0);

Parameters The GetRECEIVER() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetTIMESTAMP()

Gets the TIMESTAMP attribute from the PREDEFINED MONITOR section in the
CXIP message.

Syntax int CXxsMSG::GetTIMESTAMP(char **v, int allocstr = 0);

Parameters The GetTIMESTAMP() method has the following parameters:

Returns 0 when successful; -1 otherwise.

v pointer to the SENDER string pointer

allocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

v pointer to the RECEIVER string pointer

allocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

v pointer to the TIMESTAMP string pointer

allocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data
70 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
GetCONTROL()

Gets the CONTROL section object from the CXIP message.

Syntax int CXxsMSG::GetCONTROL(CXxsObj *obj);

Parameters The GetCONTROL() method has the following parameter:

Returns 0 when successful; -1 otherwise.

GetMONITOR()

Gets the PREDEFINED MONITOR section object from the CXIP message.

Syntax int CXxsMSG::GetMONITOR(CXxsObj *obj);

Parameters The GetMONITOR() method has the following parameter:

Returns 0 when successful; -1 otherwise.

Gets the USRDEFINED MONITOR section object from the CXIP message.

Syntax int CXxsMSG::GetMONITOR(const char *n, CXxsObj *obj);

Parameters The GetMONITOR() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetPredefinedMONITOR()

Gets the PREDEFINED MONITOR section object from the CXIP message.

Syntax int CXxsMSG::GetPredefinedMONITOR(CXxsObj *obj);

obj the found control object

obj the found predefined monitor object

n the name of the (user-defined) monitor section

obj the found monitor object
02 July 99 Chapter 5, The ECXpert XML SDK 71

CXxsMSG Class Reference
Parameters The GetPredefinedMONITOR() method has the following parameter:

Returns 0 when successful; -1 otherwise.

GetUsrDefinedMONITOR()

Syntax int CXxsMSG::GetUsrDefinedMONITOR(CXxsObj *obj);

Gets the first USRDEFINED MONITOR section object from the CXIP message.

Parameters The GetUsrDefinedMONITOR() method has the following parameter:

Syntax int CXxsMSG::GetUsrDefinedMONITOR(CXxsObj pobj, CXxsObj *obj);

Gets the next USRDEFINED MONITOR section object from the CXIP message.

Parameters The CXxsMSG() method has the following parameters:

Syntax int CXxsMSG::GetUsrDefinedMONITOR(const char *n, CXxsObj *obj);

Gets the named USRDEFINED MONITOR section object from the CXIP
message.

Parameters The GetUsrDefinedMONITOR() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetINPUT()

Gets the first INPUT object from the DATA section in the CXIP message.

obj the found predefined monitor object

obj the found monitor objec

pobj the current monitor object

obj the found monitor object

n the name of the monitor object

obj the found monitor object
72 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
Syntax int CXxsMSG::GetINPUT(CXxsObj *obj) ;

Parameters The GetINPUT() method has the following parameter:

Gets the next INPUT object from the data section in the CXIP message.

Syntax int CXxsMSG::GetINPUT(CXxsObj pobj, CXxsObj *obj);

Parameters The GetINPUT() method has the following parameters:

Gets the named INPUT object from the data section in the CXIP message.

Syntax int CXxsMSG::GetINPUT(const char *n, CXxsObj *obj);

Parameters The GetINPUT() method has the following parameters:

Gets the named INPUT value from the data section in the CXIP message.

Syntax int CXxsMSG::GetINPUT(const char *n, int *v);

Parameters The GetINPUT() method has the following parameters:

Gets the named INPUT value from the data section in the CXIP message.

Syntax int CXxsMSG::GetINPUT(const char *n, char **v, int allocstr =
0);

obj the found input object

pobj the current input object

obj the found input object

n the name of the input object

obj the found input object

n name of the input object

v pointer to the input value
02 July 99 Chapter 5, The ECXpert XML SDK 73

CXxsMSG Class Reference
Parameters The GetINPUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetOUTPUT()

Gets the first OUTPUT object from the DATA section in the CXIP message.

Syntax int CXxsMSG::GetOUTPUT(CXxsObj *obj);

Parameters The GetOUTPUT() method has the following parameter:

Gets the next OUTPUT object from the data section in the CXIP message.

Syntax int CXxsMSG::GetOUTPUT(CXxsObj pobj, CXxsObj *obj);

Parameters The GetOUTPUT() method has the following parameters:

Gets the named OUTPUT object from the data section in the CXIP message.

Syntax int CXxsMSG::GetOUTPUT(const char *n, CXxsObj *obj);

Parameters The GetOUTPUT() method has the following parameters:

Gets the named OUTPUT value from the data section in the CXIP message.

Syntax int CXxsMSG::GetOUTPUT(const char *n, int *v);

n name of the input object

v pointer to the pointer of input value string

allocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

obj the found output object

pobj the current output object

obj the found output object

n the name of the output object

obj the found output object
74 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
Parameters The GetOUTPUT() method has the following parameters:

Gets the named OUTPUT value from the data section in the CXIP message.

Syntax int CXxsMSG::GetOUTPUT(const char *n, char **v, int allocstr =
0);

Parameters The GetOUTPUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

SetCONTROL()

Sets the specified attribute in the CONTROL section for a CXIP message.

Syntax int CXxsMSG::SetCONTROL(const char *n, long v);

Parameters The SetCONTROL() method has the following parameters:

Sets the specified attribute in the CONTROL section for a CXIP message.

Syntax int CXxsMSG::SetCONTROL(const char *n, const char *v);

Parameters The SetCONTROL() method has the following parameters:

Returns 0 when successful; -1 otherwise.

n name of the output object

v pointer to the output value

n name of the output object

v pointer to the pointer of output value string

allocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

n the name of the attribute

v the attribute value

n the name of the attribute

v the attribute value
02 July 99 Chapter 5, The ECXpert XML SDK 75

CXxsMSG Class Reference
SetMSGTYPE()

Sets the MSGTYPE attribute in the CONTROL section for a CXIP message.

Syntax int CXxsMSG::SetMSGTYPE(const char *v);

Parameters The SetMSGTYPE() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetSERVICE()

Sets the SERVICE attribute in the CONTROL section for a CXIP message.

Syntax int CXxsMSG::SetSERVICE(const char *v);

Parameters The SetSERVICE() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetTIMEOUT()

Sets the TIMEOUT attribute in the CONTROL section for a CXIP message.

Syntax int CXxsMSG::SetTIMEOUT(long v);

Parameters The SetTIMEOUT() method has the following parameter:

Returns 0 when successful; -1 otherwise.

v the MSGTYPE value

v the SERVICE value

v the TIMEOUT value
76 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
SetRETRIES()

Sets the RETRIES attribute in the CONTROL section for a CXIP message.

Syntax int CXxsMSG::SetRETRIES(long v);

Parameters The SetRETRIES() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetSTATUS()

Sets the STATUS attribute in the CONTROL section for a CXIP message.

Syntax int CXxsMSG::SetSTATUS(long v);

Parameters The SetSTATUS() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetPreDefinedMONITOR()

Sets the specified attribute in the PREDEFINED MONITOR section for a CXIP
message.

Syntax int CXxsMSG::SetPreDefinedMONITOR(const char *n, const char *v);

Parameters The SetPreDefinedMONITOR() method has the following parameters:

Returns 0 when successful; -1 otherwise.

v the RETRIES value

v the STATUS value

n the name of the attribute

v the attribute value
02 July 99 Chapter 5, The ECXpert XML SDK 77

CXxsMSG Class Reference
SetSENDER()

Sets the SENDER attribute in the PREDEFINED MONITOR section for a CXIP
message.

Syntax int CXxsMSG::SetSENDER(const char *v);

Parameters The SetSENDER() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetRECEIVER()

Sets the RECEIVER attribute in the PREDEFINED MONITOR section for a CXIP
message.

Syntax int CXxsMSG::SetRECEIVER(const char *v);

Parameters The SetRECEIVER() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetTIMESTAMP()

Sets the TIMESTAMP attribute in the PREDEFINED MONITOR section for a
CXIP message.

Syntax int CXxsMSG::SetTIMESTAMP(const char *v);

Parameters The SetTIMESTAMP() method has the following parameter:

Returns 0 when successful; -1 otherwise.

v the SENDER attribute value

v the RECEIVER attribute value

v the TIMESTAMP attribute value
78 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
SetUsrDefinedMONITOR()

Sets the specified attribute in the USRDEFINED MONITOR section for a CXIP
message.

Syntax int CXxsMSG::SetUsrDefinedMONITOR(const char *n, const char *v);

Parameters The SetUsrDefinedMONITOR() method has the following parameters:

Returns 0 when successful; -1 otherwise.

SetINPUT()

Sets the specified input variable in the DATA section for a CXIP message.

Syntax int CXxsMSG::SetINPUT(const char *n, const char *v);

Parameters The SetINPUT() method has the following parameters:

Sets the specified input attribute in the DATA section for a CXIP message.

Syntax int CXxsMSG::SetINPUT(const char *n, const char *g, long v);

Parameters The SetINPUT() method has the following parameters:

Sets the specified input attribute in the DATA section for a CXIP message.

Syntax int CXxsMSG::SetINPUT(const char *n, const char *g, const char
*v);

n the name of the attribute

v the attribute value

n the name of the input variable

v the variable value

n the name of the input variable

g the attribute name

v the attribute value
02 July 99 Chapter 5, The ECXpert XML SDK 79

CXxsMSG Class Reference
Parameters The SetINPUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

SetOUTPUT()

Sets the specified output attribute in the DATA section for a CXIP message.

Syntax int CXxsMSG::SetOUTPUT(const char *n, const char *g, long v);

Parameters The SetOUTPUT() method has the following parameters:

Sets the specified output attribute in the DATA section for a CXIP message.

Syntax int CXxsMSG::SetOUTPUT(const char *n, const char *g, const char
*v);

Parameters The SetOUTPUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

CreateMSG()

Starts creating a CXIP message.

Syntax int CXxsMSG::CreateMSG(const char *n, const char *v);

n the name of the input variable

g the attribute name

v the attribute value

n the name of the output variable

g the attribute name

v the attribute value

n the name of the output variable

g the attribute name

v the attribute value
80 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
Parameters The CreateMSG() method has the following parameters:

Returns 0 when successful; -1 otherwise.

CreateCONTROL()

Creates the CONTROL section for a CXIP message.

Syntax int CXxsMSG::CreateCONTROL(const char *m, const char *s);

Parameters The CreateCONTROL() method has the following parameters:

Returns 0 when successful; -1 otherwise.

CreateTIMEOUT()

Creates the TIMEOUT attribute value in the CONTROL section for a CXIP
message.

Syntax int CXxsMSG::CreateTIMEOUT(long v);

Parameters The CreateTIMEOUT() method has the following parameter:

Returns 0 when successful; -1 otherwise.

CreateRETRIES()

Creates the RETRIES attribute value in the CONTROL section for a CXIP
message.

Syntax int CXxsMSG::CreateRETRIES(long v);

n the name of the message; must be CXIP_MSG

v the version of the message; must be 1.0

m the value of MSGTYPE attribute

s the value of SERVICE attribute

v the value of TIMEOUT attribute
02 July 99 Chapter 5, The ECXpert XML SDK 81

CXxsMSG Class Reference
Parameters The CreateRETRIES() method has the following parameter:

Returns 0 when successful; -1 otherwise.

CreateSTATUS()

Creates the STATUS attribute value in the CONTROL section for a CXIP
message.

Syntax int CXxsMSG::CreateSTATUS(long v);

Parameters The CreateSTATUS() method has the following parameter:

Returns 0 when successful; -1 otherwise.

CreatePreDefinedMONITOR()

Creates the PREDEFINED MONITOR section for a CXIP message.

Syntax int CXxsMSG::CreatePreDefinedMONITOR(const char *s, const char
*r, const char *t = 0);

Parameters The CreatePreDefinedMONITOR() method has the following parameters:

Returns 0 when successful; -1 otherwise.

CreateUsrDefinedMONITOR()

Creates create the USRDEFINED MONITOR section for a CXIP message.

v the value of RETRIES attribute

v the value of STATUS attribute

s the value of SENDER attribute

r the value of RECEIVER attribute

t the value of TIMESTAMP attribute; passing zero value causes it
to be created internally using current time
82 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsMSG Class Reference
Syntax int CXxsMSG::CreateUsrDefinedMONITOR(const char *n, const char
*t, const char *v);

Parameters The CreateUsrDefinedMONITOR() method has the following parameters:

Returns 0 when successful; -1 otherwise.

CreateINPUT()

Creates the INPUT variable in the DATA section for a CXIP message.

Syntax int CXxsMSG::CreateINPUT(const char *n, const char *t, const
char *v, int opt = 0);

Parameters The CreateINPUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

Creates the INPUT variable in the DATA section for a CXIP message.

Syntax int CXxsMSG::CreateINPUT(const char *n, const char *t, const
char *v, const char *charset, const char *encoding, *v, int opt
= 0);

n the value of NAME attribute

t the value of TYPE attribute

v the value of the data

n the value of NAME attribute

t the value of TYPE attribute

v the value of the data

opt the option, which can be OR’ed from the following options:

• CXXS_OPT_KEEPIT - use the string directly; do not duplicate
another copy internally

• CXXS_OPT_FREE - use free() instead of delete to
release the string
02 July 99 Chapter 5, The ECXpert XML SDK 83

CXxsMSG Class Reference
Parameters The CreateINPUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

CreateOUTPUT()

Creates the OUTPUT variable in the DATA section for a CXIP message.

Syntax int CXxsMSG::CreateOUTPUT(const char *n, const char *t, const
char *v, int opt = 0);

Parameters The CreateOUTPUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

Creates the OUTPUT variable in the DATA section for a CXIP message.

n the value of NAME attribute

t the value of TYPE attribute

v the value of the data

charset the value of CHARSET attribute

encoding the value of ENCODING attribute

opt the option, which can be OR’ed from the following options:

• CXXS_OPT_KEEPIT - use the string directly; do not duplicate
another copy internally

• CXXS_OPT_FREE - use free() instead of delete to
release the string

n the value of NAME attribute

t the value of TYPE attribute

v the value of the data

opt the option, which can be OR'ed from the following options:

• CXXS_OPT_KEEPIT - use the string directly; do not duplicate
another copy internally

• CXXS_OPT_FREE - use free() instead of delete to
release the string
84 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsDOM Class Reference
Syntax int CXxsMSG::CreateOUTPUT(const char *n, const char *t, const
char *v, const char *charset, const char *encoding, int opt =
0);

Parameters The CreateOUTPUT() method has the following parameters:

Returns 0 when successful; -1 otherwise.

CXxsDOM Class Reference
Interface cxxsdom.h

Superclasses Not applicable.

Subclasses CXxsMSG, CXIP_MSG

Syntax class CXxsDOM { ... };

Constructor and Destructor

CXxsDOM()

Creates a CXxsDOM object.

Syntax Not intended to be used directly.

n the value of NAME attribute

t the value of TYPE attribute

v the value of the data

charset the value of CHARSET attribute

encoding the value of ENCODING attribute

opt the option, which can be OR’ed from the following options:

• CXXS_OPT_KEEPIT - use the string directly; do not duplicate
another copy internally

• CXXS_OPT_FREE - use free() instead of delete to
release the string
02 July 99 Chapter 5, The ECXpert XML SDK 85

CXxsDOM Class Reference
~CXxsDOM()

Destroys a CXxsDOM object.

Syntax Not intended to be used directly.

Methods

This section lists the methods of the CXxsDOM class.

Parse()

Parses an XML-formatted message, which is passed to this object from the
constructor.

Syntax int CXxsDOM::Parse(int opt = 0);

Parameters The Parse() method has the following parameter:

Returns 0 when successful; -1 otherwise.

Format()

Formats an XML-formatted message from the internal DOM object tree created
previously by the Create methods.

Syntax int CXxsDOM::Format(int opt = 0);

Parameters The Format() method has the following parameter:

opt the option, which can be OR’ed from the following options:

• CXXS_OPT_DELETEDOC - delete the XML message once the
internal DOM object tree is formatted after the parsing

opt the option, which can be OR'ed from the following options:

• CXXS_OPT_DELETEDOM - delete the internal DOM object
tree once the XML message is formatted/constructed
86 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXxsDOM Class Reference
Returns 0 when successful; -1 otherwise.

GetErrors()

Retrieves information about the parsing error.

Syntax const char *CXxsDOM::GetErrors(int *ecode, int *eline, int
*ecol);

Parameters The GetErrors() method has the following parameters:

Returns The error message, if available.

GetDTD()

Gets the XML DTD from this object.

Syntax inline const char *CXxsDOM::GetDTD();

Parameters None.

Returns The DTD string pointer.

GetDocument()

Gets the XML document from this object.

Syntax inline const char *CXxsDOM::GetDocument();

Parameters None.

Returns The document string pointer.

ecode the error code

eline the line number where error is detected

ecol the column number where error is detected
02 July 99 Chapter 5, The ECXpert XML SDK 87

CXxsDOM Class Reference
GetObjectName()

Gets the object name from a CXxsDOM object.

Syntax int CXxsDOM::GetObjectName(CXxsObj obj, char **v);

Parameters The GetObjectName() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetObjectData()

Gets the object data from a CXxsDOM object.

Syntax int CXxsDOM::GetObjectData(CXxsObj obj, char **v);

Parameters The GetObjectData() method has the following parameters:

Returns 0 when successful; -1 otherwise.

GetObjectAttribute()

Gets the object attribute from a CXxsDOM object.

Syntax int CXxsDOM::GetObjectAttribute(CXxsObj obj, const char *n, int
*v);

Parameters The GetObjectAttribute() method has the following parameters:

obj the object

v the value of the object name

obj the object

v the value of the object data

obj the object

n the name of the object attribute

v the value of the object attribute
88 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXIPInit Class Reference
Syntax int CXxsDOM::GetObjectAttribute(CXxsObj obj, const char *n, char
**v);

Parameters The GetObjectAttribute() method has the following parameters:

Returns 0 when successful; -1 otherwise.

CXIPInit Class Reference
Interface cxipinit.h

Superclasses Not applicable.

Subclasses None.

Syntax class CXIPInit { ... };

Constructor and Destructor

CXIPInit()

Creates a CXIPInit object.

Syntax CXIPInit::CXIPInit();

Parameters None.

~CXIPInit()

Destroys a CXIPInit object.

Syntax virtual ~CXIPInit();

obj the object

n the name of the object attribute

v the value of the object attribute
02 July 99 Chapter 5, The ECXpert XML SDK 89

CXIPInit Class Reference
Methods

This section lists the methods of the CXIPInit class.

Init()

Initializes the XML SDK application.

Syntax int CXIPInit::Init();

Parameters None

Returns 0 when successful; -1 otherwise.

SetDebugMode()

Sets debug mode of the application.

Syntax void CXIPInit::SetDebugMode(int d);

Parameters The SetDebugMode() method has the following parameter:

SetLogFiles()

Sets output files for debug messages.

Syntax void CXIPInit::SetLogFiles(const char *o, const char *e);

Parameters The SetLogFiles() method has the following parameters:

Base64Decode()

Performs a Base64 decoding.

d the debug mode - 1 when on, 0 when off

o the output file for stdout messages - stdout when nil

e the output file for stderr messages - stderr when nil
90 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXIPConnection Class Reference
Syntax static void *CXIPInit::Base64Decode(char *src, long& srclen,
long &declen);

Parameters The Base64Decode() method has the following parameters:

Returns The encoded string when successful; 0 otherwise.

Base64Encode()

Performs a Base64 decoding.

Syntax static char *CXIPInit::Base64Encode(void *src, long& srclen,
long &enclen);

Parameters The Base64Encode() method has the following parameters:

Returns The encoded string when successful; 0 otherwise.

CXIPConnection Class Reference
Interface cxipconn.h

Superclasses Not applicable.

Subclasses None.

Syntax class CXIPConnection { ... };

src the source of the (encoded) string to be decoded

srclen the length of the (encoded) source length

declen the length of the decoded string length

src the source of the string to be encoded

srclen the length of the source length

enclen the length of the encoded string length
02 July 99 Chapter 5, The ECXpert XML SDK 91

CXIPConnection Class Reference
Constructor and Destructor

CXIPConnection()

Creates a CXIPConnection object.

Syntax CXIPConnection::CXIPConnection();

Parameters None.

~CXIPConnection()

Destroys a CXIPConnection object.

Syntax virtual ~CXIPConnection();

Methods

This section lists the methods of the CXIPConnection class.

Connect()

Sonnects to a specified host and port.

Syntax int CXIPConnection::Connect(const char *host, int port);

Parameters The Connect() method has the following parameters:

Returns 0 when successful; -1 otherwise.

host the host name or IP address

port the port number
92 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXIPListener Class Reference
SendMessage()

Sends a message through the connection.

Syntax int CXIPConnection::SendMessage(const char *m);

Parameters The SendMessage() method has the following parameter:

Returns The number of bytes sent when successful; -1 otherwise.

ReceiveMessage()

Receives a message from the connection.

Syntax int CXIPConnection::ReceiveMessage(char **m);

Parameters The ReceiveMessage() method has the following parameter:

Returns The number of bytes received when successful; -1 otherwise.

CXIPListener Class Reference
Interface cxiplsnr.h

Superclasses Not applicable.

Subclasses None.

Syntax class CXIPListener { ... };

m the null-terminated message string

m the null-terminated message string - it is allocated inside the
object and expected to be released by the caller
02 July 99 Chapter 5, The ECXpert XML SDK 93

CXIPListener Class Reference
Constructor and Destructor

CXIPListener()

Creates a CXIPListener object.

Syntax CXIPListener::CXIPListener();

Parameters None.

~CXIPListener()

Destroys a CXIPListener object.

Syntax virtual ~CXIPListener();

Methods

This section lists the methods of the CXIPListener class.

Init()

Initializes the listener.

Syntax int CXIPListener::Init(const char *conf, const char *sec, const
char *sys = "system");

Parameters The Init() method has the following parameters:

Returns 0 when successful; -1 otherwise.

conf the (ini-formatted) configuration file name

sec the section name in the configuration file

sys the system section name in the configuration file - "system" is
the default
94 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXIPListener Class Reference
Run()

Starts up (runs) the listener.

Syntax virtual int CXIPListener::Run(int blocked = 0);

Parameters The Run() method has the following parameter:

Returns 0 when successful; -1 otherwise.

ProcessMessage()

Processes a message received from a given conection.

Syntax virtual int CXIPListener::ProcessMessage(CXIPConnection *conn,
const char *m);

Parameters The ProcessMessage() method has the following parameters:

Returns 0 when successful; -1 otherwise.

Syntax virtual int CXIPListener::ProcessMessage(CXIPConnection *conn,
CXIP_MSG *m);

Parameters The ProcessMessage() method has the following parameters:

Returns 0 when successful; -1 otherwise.

blocked the flag indicating whether to run the listener in blocking
mode or not - 0 is non-blocking, any other value is blocking

conn the connection from which the message is received

m the null-terminated message string

conn the connection from which the message is received

m the parsed XML message in CXIP_MSG format
02 July 99 Chapter 5, The ECXpert XML SDK 95

CXSubmit Class Reference
CXSubmit Class Reference
Interface cxsbmt.h

Superclasses Not applicable.

Subclasses None.

Syntax class CXSubmit { ... };

Constructor and Destructor

CXSubmit()

Creates a CXSubmit object.

Syntax CXSubmit::CXSubmit();

Parameters None.

~CXSubmit()

Destroys a CXSubmit object.

Syntax virtual ~CXSubmit();

Methods

This section lists the methods of the CXSubmit class.

Submit()

Submits the document using related parameters specifed inside this object.

Syntax int CXSubmit::Submit();
96 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 CXSubmit Class Reference
Parameters None. Parameters are specified inside this object.

Returns 0 when successful; -1 otherwise.

SetHost()

Sets the host name or IP address to submit to.

Syntax int CXSubmit::SetHost(const char *host);

Parameters The CXSubmit() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetPort()

Sets the port number to submit to.

Syntax int CXSubmit::SetPort(const char *host);

Parameters The SetPort() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetSender()

Sets the sender name.

Syntax int CXSubmit::SetSender(const char *sender);

Parameters The SetSender() method has the following parameter:

Returns 0 when successful; -1 otherwise.

host the host name or IP address to submit to

port the port number to submit to

sender the sender of the submission
02 July 99 Chapter 5, The ECXpert XML SDK 97

CXSubmit Class Reference
SetReceiver()

Sets the receiver name.

Syntax int CXSubmit::SetReceiver(const char *receiver);

Parameters The SetReceiver() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetDocType()

Sets the document type.

Syntax int CXSubmit::SetDocType(const char *doctype);

Parameters The SetDocType() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetDocPath()

Sets the document path.

Syntax int CXSubmit::SetDocPath(const char *docpath);

Parameters The SetDocPath() method has the following parameter:

Returns 0 when successful; -1 otherwise.

receiver the receiver of the submission

doctype the document type of the submission

docpath the document path of the submission
98 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Examples
SetDocTransport()

Sets the document transport method.

Syntax int CXSubmit::SetDocTransport(const char *doctrans);

Parameters The SetDocTransport() method has the following parameter:

Returns 0 when successful; -1 otherwise.

SetIDs()

Sets the sender and receiver IDs/names for CXIP message.

Syntax int CXSubmit::SetIDs(const char *s, const char *r);

Parameters The SetIDs() method has the following parameters:

Note These are not the same Sender/Receiver as in the partnership.

Examples
Makefile The Makefile.{solaris|hpux} under the example directory needs only minimal

modifications to build the sample programs. The two steps are:

1. Change the ECXpert = ${ECXPERT-INSTALLATION-LOCATION} to
the path of the installation. For example:

/user/apps/ECX/NS-apps/ECXpert

2. Change the CC = ${YOUR_CPP_COMPILER} to the path of the C++
compiler.

Source Code See the source files under the xmlsdk/example directory.

doctrans the transport method of the submission

s the sender id

r the receiver id
02 July 99 Chapter 5, The ECXpert XML SDK 99

Examples
Configuration File See xmlsdk/config/xmlserver.ini for a configuration example.
100 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

6
The EcxBase Class
his chapter describes the EcxBase class, which is the base class for all
APIs in ECXpert. This chapter contains the following sections:

• About the EcxBase Class

• EcxBase Class Reference

T

02 July 99 Chapter 6, The EcxBase Class 101

About the EcxBase Class
About the EcxBase Class
The EcxBase class defines the class from which all ECXpert API classes are
derived. For example, ECXpert’s EcxSubmit class is derived from the EcxBase
class. You may define a subclass derived from the EcxBase class. The
EcxBase class is intended to be used as an abstract class. You should never
need to create EcxBase objects.

The EcxBase class defines methods that are common to the ECXpert API
classes you use to interact programmatically with the ECXpert System. The class
provides methods that allow you to get, set, and clear the error number corre-
sponding to the last error reported by ECXpert.

Methods Summary list:

EcxBase Class Reference
Interface ecxbase.h

Superclasses None

Subclasses EcxAddresses, EcxDocument, EcxFTPClient, EcxInit, EcxLog,
EcxLogin, EcxMember, EcxPartnership, ECXService, ECXServiceList,
EcxSubmit, EcxTracking

Friend Classes None

Syntax class EcxBase { ... };

Constructor and destructor

EcxBase() Creates an EcxBase object.

~EcxSBase() Destroys an EcxBase object.

Error handling

Errnum() Retrieves or sets the last error.

ClearErr() Clears the last error that occurred.

ErrMsg Returns error message string.
102 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxBase Class Reference
Constants and Data Types

The following definitions, which are defined at file scope, allow you to specify
boolean values as integers:

Syntax #define TRUE 1

#define FALSE 0

Constructor and Destructor

EcxBase()

Creates an EcxBase object.

Syntax EcxBase(void);

~EcxBase()

Destroys an EcxBase object.

Syntax virtual ~EcxBase();

Methods

This section lists the methods of the EcxBase class.

ClearErr()

Clears the last error that occurred.

TRUE A true value, which is represented as 1.

FALSE A false value, which is represented as 0.
02 July 99 Chapter 6, The EcxBase Class 103

EcxBase Class Reference
Syntax virtual void ClearErr(void);

Discussion The last error that occurred as a result of calling a method in the ECXpert API is
available until it is explicitly cleared by calling this method or until it has been
reset by calling the Errnum() method. The ClearErr() method sets the error
number to 0.

Example pSubmitObj->ClearErr();

See also The Errnum() method on page 104.

Errnum()

Retrieves or sets the last error.

Syntax virtual long Errnum(void);

virtual void Errnum(long ErrNum);

Parameters The Errnum() method has the following parameters:

Returns A long integer that contains the last error that occurred.

Discussion The first form of the Errnum() method returns the last error that occurred. The
second form sets the value of the error number. The second form is protected.

Note When you use the API, ECXpert sets the error number.ECXpert

Example if (pSubmitObj->Errnum())
printf("Error: %ld occurred\n", pSubmitObj->Errnum();

See also Call the ClearErr() method on page 103 to reset the error number to 0.

Errmsg()

Returns error message string.

Syntax virtual const char * Errmsg(void);

Returns Pointer to a character string containing the last error message that occurred.

ErrNum A long integer that specifies the error number.
104 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxBase Class Reference
Discussion This value could be null, because not every object gets the error message. Refer
to the code examples for each class in this book to determine whether it will
return an error message. For example, the ECXLogin class will return an error
message if it fails.

Example if((pLogin = new EcxLogin())->Errnum()) {
cout << "EcxLogin Object Error:" << endl;
cout << "\tErrnum: " << pLogin->Errnum() << endl;
cout << "\tErrmsg: " << pLogin->Errmsg() << endl;
cout << endl;
return(NULL);}

See Also The EcxLogin() class on page 127.
02 July 99 Chapter 6, The EcxBase Class 105

EcxBase Class Reference
106 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

7
The EcxInit Class
his chapter describes the EcxInit class, whose objects initialize your
application to for ECXpert database access. This chapter contains the

following sections:

• About the EcxInit Class

• Using the EcxInit Class

• EcxInit Class Reference

T

02 July 99 Chapter 7, The EcxInit Class 107

About the EcxInit Class
About the EcxInit Class
You must create an EcxInit object before using any other class in the SDK.

Methods Summary list:

Using the EcxInit Class
You must create a single EcxInit object within your application. You can call
the class’s Errnum() method to determine whether initialization succeeded.

int main(int argc, char * argv[])
{

...
EcxInit EcxInitObject;
...
do // main processing loop
{

if (EcxInitObject.Errnum() != 0)
{

printf("Failed to initialize EcxInit object.\n");
break;

}
...
}
...

}

EcxInit Class Reference
Interface ecxinit.h

Superclasses EcxBase

Subclasses None

Friend Classes None

Constructor and destructor

EcxInit() Creates an EcxInit object.

~EcxInit() Destroys an EcxInit object.
108 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxInit Class Reference
Syntax class EcxInit : public EcxBase { ... };

Constructor and Destructor

EcxInit()

Creates an EcxInit object.

Syntax EcxInit(void);

Example See “Using the EcxInit Class” on page 108.

~EcxInit()

Destroys an EcxInit object.

Syntax virtual ~EcxInit();
02 July 99 Chapter 7, The EcxInit Class 109

EcxInit Class Reference
110 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

8
The EcxSubmit Class
his chapter describes the EcxSubmit class, which defines methods that
you use to submit files to ECXpert. This chapter contains the following

sections:

• About the EcxSubmit Class

• Using the EcxSubmit Class

• EcxSubmit Class Reference

T

02 July 99 Chapter 8, The EcxSubmit Class 111

About the EcxSubmit Class
About the EcxSubmit Class
The EcxSubmit class defines methods that you use to submit a file to ECXpert.
You can use these methods to provide a file submission capability within your
application instead of requiring the user to execute a command or use
ECXpert’s HTML interface to submit an object.

You may create objects from the EcxSubmit class and use them directly or you
may define a subclass of the EcxSubmit class and create objects from the
derived class. For example, you might define a subclass that handles much of
the application logic associated with files to be submitted to ECXpert. Objects
derived from your subclass would inherit the ability to submit files to ECXpert.

Before you create an EcxSubmit object, you must first create an EcxInit
object. You then can create an EcxSubmit object and specify the following
information:

• Member ID of the sender

• Member ID of the recipient

• Sender’s password, which is optional for trusted members

• Full path of ECXpert’s configuration file

• Map name (optional)

• Delivery method (optional)

• File name

• File type

You call methods to specify this information. For example, you call the object’s
SetSender method (page 125) to specify the sender’s member ID.

You must specify the files that you wish to submit to ECXpert. You build a
submission list by calling the object’s AddFile() method (page 118) to add a
file to the list. You specify the following information when you add a file:

• Document name

• Document type, such as EDIFACT or EDIX12, or a non-EDI type
112 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 About the EcxSubmit Class
You can add as many files as you want. If you add more than one file, the files
become part of a single multi-part file. When you finish adding the files to the
submission list, you can call the object’s Submit() method (page 125) to
submit the files.

If the file being submitted is in the local file system, ECXpert moves the file
being submitted to the directory specified by the repository entry in the
configuration file’s tcpip-connector section.

You can also submit files to ECXpert using a TCP/IP connection. You specify
whether or not to use a TCP/IP connection when you call the object’s
Submit() method. Using a TCP/IP connection causes ECXpert to stream the
contents of the files through a socket to the server. This is a useful technique if
your application runs on a remote computer and the files being submitted are
relatively small. If you want to submit large files from a remote computer, you
should consider using a protocol such as FTP to copy the files to the server and
then submit them from the server.

Note If you stream data through a TCP/IP connection, the source file is not deleted
after the data has been streamed to the server.

After you submit a file, you should check for errors. If no error occurred, you
can call the object’s GetFirstTrackingID() method (page 119) to determine
the tracking ID of the first file submitted and the object’s GetNextTrack-
ingID() method (page 121) to determine the tracking ID for each additional
file in the list.

When you no longer need references to these files, you can call the object’s
ClearFileList() method (page 119) to remove the files from the list. You
could then add new file(s) by calling the AddFile() method and then submit
the new file by calling the Submit() method.

Methods Summary list:

Constructor and destructor

EcxSubmit() Creates a submission object.

~EcxSubmit() Destroys a submission object.

Retrieving submission information

GetDeliveryMethod Gets the delivery method.

GetEcxIniFileName Gets the full pathname of ECXpert’s configuration file.

GetMapName Gets the map name.

GetPassword Gets the sender’s password
02 July 99 Chapter 8, The EcxSubmit Class 113

Using the EcxSubmit Class
Using the EcxSubmit Class
The following program shows how to use the EcxSubmit class. The program
creates an EcxSubmit object and sets the sender, receiver, password, map
name, and initialization file. It then adds three files to the submission list and
submits them to ECXpert for processing. After submitting the files, the program
retrieves the tracking IDs of these files.

#include <stdio.h>

#include "ecxsubmit.h"

int main(int argc, char * argv[])

{

 int retval = -1;

 EcxInit EcxInitObject; // must instantiate this

GetSender Gets the sender’s member ID.

Setting submission information

SetSender() Sets the sender’s member ID.

SetRecipient() Sets the recipient’s member ID.

SetPassword() Sets the sender’s password.

SetEcxIniFileName() Sets the full pathname of ECXpert’s configuration file.

SetMapName() Sets the map name.

SetDeliveryMethod() Sets the delivery method.

Manipulating the submission list

AddFile() Adds a file to the submission list.

ClearFileList() Clears the submission list.

GetFirstTrackingID() Retrieves the tracking ID for the first file in the object’s submis-
sion list.

GetNextTrackingID() Retrieves the tracking ID for the next file in the object’s sub-
mission list.

Submitting files

Submit() Submits objects to ECXpert for processing.
114 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxSubmit Class
 // before calling sdk

 EcxSubmit * pSubmitObj = 0;

 do

 {

 if (EcxInitObject.Errnum() != 0)

 {

 printf("Failed to initialize EcxInit object.\n");

 break;

 }

 if ((pSubmitObj = new EcxSubmit) == 0)

 {

 printf("No memory to create Ecxpert submission object.\n");

 break;

 }

 if (pSubmitObj->SetSender("jim1").Errnum() ||

 pSubmitObj->SetRecipient("smani1").Errnum() ||

 pSubmitObj->SetPassword("jim1").Errnum() ||

 pSubmitObj->SetMapName("mymap").Errnum() ||

 pSubmitObj->SetEcxIniFileName("ecx.ini").Errnum() ||

 pSubmitObj->SetDeliveryMethod("via-my-app").Errnum())

 {

 printf("Failed to set submission parameters.\n");

 break;

 }

 if (pSubmitObj->AddFile("input1.dat", "edi850").Errnum() ||

 pSubmitObj->AddFile("input2.dat", "edi850").Errnum() ||

 pSubmitObj->AddFile("input3.dat", "edi850").Errnum())

 {

 printf("Failed to add files to the submission object.\n");

 break;

 }

 printf("Submission parameters are as follows:\n"

 "ECXpert configuration file = %s\n"

 "Sender name = %s\n"

 "Recipient name = %s\n"

 "Password = %s\n"
02 July 99 Chapter 8, The EcxSubmit Class 115

Using the EcxSubmit Class
 "Delivery method = %s\n"

 "Map name = %s\n",

 pSubmitObj->GetEcxIniFileName(),pSubmitObj->GetSender(),

 pSubmitObj->GetRecipient(), pSubmitObj->GetPassword(),

 pSubmitObj->GetDeliveryMethod(),pSubmitObj->GetMapName());

 printf("Submitting files now......\n");

 if (pSubmitObj->Submit().Errnum())

 {

 printf("Submission failed.\n");

 break;

 }

 long TrackingID = pSubmitObj->GetFirstTrackingID();

 for (int LoopCount = 1; TrackingID != 0; ++LoopCount)

 {

 printf("Registered file input%d with Tracking ID %ld\n",

 LoopCount, TrackingID);

 TrackingID = pSubmitObj->GetNextTrackingID();

 }

 retval = 0; // set return code to success

 }

 while(0);

 if (pSubmitObj)

 {

 if (pSubmitObj->Errnum())

 {

 printf("Error: %ld\n", pSubmitObj->Errnum());

 }

 delete pSubmitObj;

 }

 return(retval);
116 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxSubmit Class Reference
EcxSubmit Class Reference
Interface ecxsubmit.h

Superclasses EcxBase

Subclasses None

Friend Classes None

Syntax class EcxSubmit : public EcxBase { ... };

Constructor and Destructor

EcxSubmit()

Creates a submission object.

Syntax EcxSubmit(void);

Discussion The constructor creates a submission object.

Example See “Using the EcxSubmit Class” on page 114.

~EcxSubmit()

Destroys a submission object.

Syntax ~EcxSubmit(void);

Discussion The destructor destroys a submission object.

Example See “Using the EcxSubmit Class” on page 114.

See Also The Submit() method on page 125.
02 July 99 Chapter 8, The EcxSubmit Class 117

EcxSubmit Class Reference
Methods

This section lists the methods of the EcxSubmit class.

AddFile()

Adds a file to the submission list.

Syntax EcxSubmit& AddFile(const char * pFileName,
const char * pFileType);

Parameters The AddFile() method has the following parameters:

Returns A reference to this submission object.

Discussion The AddFile() method adds the specified file to the submission list. You can
add as many files to the submission list as you wish. If you add more than one
file, the files become part of a single multi-part file.

If you do not specify the path name, ECXpert looks for the file in the directory
where the tcpip-connector server is executing. You can avoid errors locating
the file by specifying the full path name as part of the file name.

After you add the files and specify the other information associated with the
submission object, you can call the object’s Submit() method to submit the
files to ECXpert for processing. You should immediately check for errors after
calling the Submit() method. If an error occurs, none of the files are
submitted. They are either all submitted successfully or none of them are
submitted.

Example See “Using the EcxSubmit Class” on page 114.

See Also The Submit() method on page 125.

pFileName A pointer to the path and file name of the file you want to
include with this submission.

pFileType A pointer to the data type of the file you want to include with
this submission.
118 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxSubmit Class Reference
ClearFileList()

Clears the file list.

Syntax void ClearFileList(void);

Discussion All files associated with this submission instance can no longer be referenced.

See Also The AddFile() method on page 118.

GetDeliveryMethod()

Retrieves the delivery method set by the SetDeliveryMethod() method.

Syntax virtual const char* GetDeliveryMethod(void) const;

Returns A pointer to a character string that contains the delivery method set by the
SetDeliveryMethod() method.

Discussion The GetDeliveryMethod() method will return a NULL (zero) value if the
delivery method has not already been set by the SetDeliveryMethod()
method.

Example See “Using the EcxSubmit Class” on page 114.

See Also The SetDeliveryMethod() method on page 122.

GetEcxIniFileName()

Retrieves the full pathname of ECXpert’s configuration file set by the SetEcx-
IniFileName() method.

Syntax virtual const char* GetEcxIniFileName(void) const;

Returns A pointer to a character string that contains the full pathname of ECXpert’s
configuration file set by the SetEcxIniFileName() method.

Discussion The GetEcxIniFileName() method will return a NULL (zero) value if the
file name has not already been set by the SetEcxIniFileName() method.

Example See “Using the EcxSubmit Class” on page 114.
02 July 99 Chapter 8, The EcxSubmit Class 119

EcxSubmit Class Reference
See Also The SetEcxIniFileName() method on page 123.

GetFirstTrackingID()

Retrieves the tracking ID for the first file in the object’s submission list.

Syntax long GetFirstTrackingID(void);

Returns A long integer that contains the tracking ID of the first file in the submission list
or returns 0 if there are no files in the list.

Discussion The submission list contains references to all the files since you created the
object or since the last time you called the object’s ClearFileList() method.
You should only call the GetFirstTrackingID() method after you call the
Submit() method. If you do not first call the Submit() method or if it fails, the
value returned by calling the GetFirstTrackingID() method is undefined.

After you call the object’s GetFirstTrackingID() method, the tracking ID for
the second file in the list will be the next ID to be returned, if the file exists.

Example See “Using the EcxSubmit Class” on page 114.

See Also The GetNextTrackingID() method on page 121. The Submit() method on
page 125.

GetMapName ()

Retrieves the map name set by the SetMapName() method.

Syntax virtual const char* GetMapName(void) const;

Returns A pointer to a character string that contains the map name set by the
SetMapName() method.

Discussion The GetMapName() method will return a NULL (zero) value if the map name
has not already been set by the SetMapName() method.

Example See “Using the EcxSubmit Class” on page 114.

See Also The SetMapName() method on page 123.
120 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxSubmit Class Reference
GetNextTrackingID()

Retrieves the tracking ID for the next file in the object’s submission list.

Syntax long GetNextTrackingID(void);

Returns A long integer that contains the tracking ID of the next file in the submission
list or returns 0 if there are no more files in the list.

Discussion The submission list contains references to all the files since you created the
object or since the last time you called the object’s ClearFileList() method.
You can call the GetNextTrackingID() method repeatedly to retrieve the
tracking IDs of each file in the list, in the order that you added them.

You should only call the GetNextTrackingID() method after you call the
Submit() method. If you do not first call the Submit() method or if it fails, the
value returned by calling the GetNextTrackingID() method is undefined.

After you call the GetFirstTrackingID() method, the GetNextTrack-
ingID() method returns the tracking ID for the second file in the list, if it
exists. If you call the GetNextTrackingID() method after creating the object
or after clearing the file list without first calling the object’s GetFirstTrack-
ingID() method, the GetNextTrackingID() method returns the tracking ID
of the first file in the list or returns 0 if the list is empty.

Example See “Using the EcxSubmit Class” on page 114.

See Also The GetFirstTrackingID() method on page 121. The Submit() method on
page 125.

GetPassword()

Retrives the sender’s password set by the SetPassword() method.

Syntax virtual const char* GetPassword(void) const;

Returns A pointer to a character string that contains the sender’s password set by the
SetPassword() method.

Discussion The GetPassword() method will return a NULL (zero) value if the sender’s
password has not already been set by the SetPassword() method.

Example See “Using the EcxSubmit Class” on page 114.
02 July 99 Chapter 8, The EcxSubmit Class 121

EcxSubmit Class Reference
See Also The SetPassword() method on page 124.

GetRecipient()

Retrieves the recipient’s member ID set by the SetRecipient() method..

Syntax virtual const char* GetRecipient(void) const;

Returns A pointer to a character string that contains the recipient’s member ID set by
the SetRecipient() method.

Discussion The GetRecipient() method will return a NULL (zero) value if the
recipient’s password has not already been set by the SetRecipient()
method.

See Also The SetRecipient() method on page 124.

GetSender()

Retrieves the sender’s member ID set by the SetSender() method.

Syntax virtual const char* GetSender(void) const;

Returns A pointer to a character string that contains the sender’s member ID set by the
SetSender() method.

Discussion The GetSender() method will return a NULL (zero) value if the sender’s
password has not already been set by the SetSender() method.

Example See “Using the EcxSubmit Class” on page 114.

See Also The SetSender() method on page 125.

SetDeliveryMethod()

Sets the delivery method.

Syntax virtual EcxSubmit& SetDeliveryMethod(const char *
pDeliveryMethod);
122 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxSubmit Class Reference
Parameters The SetDeliveryMethod() method has the following parameters:

Returns A reference to this submission object.

Discussion Call this method if you want to specify the way in which the file was submitted
to ECXpert. If you do not call this method, the transport type for this
submission is NULL in the database.

Example See “Using the EcxSubmit Class” on page 114.

See Also “Tracking-related Tables” on page 379.

SetEcxIniFileName()

Sets the full pathname of ECXpert’s configuration file.

Syntax EcxSubmit& SetEcxIniFileName(const char * pIniFileName);

Parameters The SetEcxIniFileName() method has the following parameters:

Returns A reference to this submission object.

Discussion The configuration file is typically found in the config subdirectory from the
directory where ECXpert was installed. You must call the SetEcxIni-
FileName() method before you call the Submit() method.

Example See “Using the EcxSubmit Class” on page 114.

See Also The Submit() method on page 125.

SetMapName()

Sets the map name.

Syntax EcxSubmit& SetMapName(const char * pMapName);

pDeliveryMethod A pointer to a character string that specifies the delivery
method.

pIniFileName A pointer to a character string that specifies the configuration
file.
02 July 99 Chapter 8, The EcxSubmit Class 123

EcxSubmit Class Reference
Parameters The SetMapName() method has the following parameters:

Returns A reference to this submission object.

Discussion Call this method if you want to override the partnership document map name
for this submission with the specified map name.

Example See “Using the EcxSubmit Class” on page 114.

SetPassword()

Sets the sender’s password.

Syntax EcxSubmit& SetPassword(const char * pPassword);

Parameters The SetPassword() method has the following parameters:

Returns A reference to this submission object.

Discussion A password can contain as many as 60 characters. It can contain letters,
numbers, and special characters, and is case sensitive. You must call the
SetPassword() method before you call the Submit() method, unless the
sender is trusted member.

Example See “Using the EcxSubmit Class” on page 114.

See Also The Submit() method on page 125.

SetRecipient()

Sets the recipient’s member ID.

Syntax EcxSubmit& SetRecipient(const char * pRecipient);

Parameters The SetRecipient() method has the following parameters:

pMapName A pointer to a character string that contains the map name.

pPassword A pointer to a character string that contains the password.

pRecipient A pointer to a character string that contains the member ID.
124 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxSubmit Class Reference
Returns A reference to this submission object.

Discussion A member ID can contain as many as 60 characters. It can contain letters,
numbers, and special characters, and is case sensitive. You must call the
SetRecipient() method before you call the Submit() method.

Example See “Using the EcxSubmit Class” on page 114.

See Also The Submit() method on page 125.

SetSender()

Sets the sender’s member ID.

Syntax EcxSubmit& SetSender(const char * pSender);

Parameters The SetSender() method has the following parameters:

Returns A reference to this submission object.

Discussion A member ID can contain as many as 60 characters. It can contain letters,
numbers, and special characters, and is case sensitive. You must call the
SetSender() method before you call the Submit() method.

Example See “Using the EcxSubmit Class” on page 114.

See Also The Submit() method on page 125.

Submit()

Submits objects to ECXpert for processing.

Syntax EcxSubmit& Submit(int bDataStreaming = FALSE);

Parameters The Submit() method has the following parameters:

Returns A reference to this submission object.

pSender A pointer to a character string that contains the member ID.

bDataStreaming Specify TRUE if you want to stream data through a TCP/IP
connection; the default is FALSE.
02 July 99 Chapter 8, The EcxSubmit Class 125

EcxSubmit Class Reference
Discussion This method submits one or more files to ECXpert. Before you can submit a
file, you must specify the sender and recipient, the sender’s password if the
sender is not a trusted member, and the ECXpert configuration file.

You must call the methods described on page 113 to set the submission infor-
mation for the EcxSubmit object.

The bDataStreaming parameter specifies whether to use a TCP/IP connection
to submit the files; set it to TRUE to use this kind of connection. The default is
FALSE, which specifies moving the files after they are on the server. See “About
the EcxSubmit Class” on page 112 for more information about streaming versus
moving files.

Note If you stream data through a TCP/IP connection, the source file is not deleted
after the data has been streamed to the server.

If you call the Submit() method again, you only need to specify the values
that have changed. For example, to submit additional files without changing the
sender and receiver, you only need to call the ClearFileList() method to
remove the current files from the list, call the AddFile() method for each file
you want to add, and then call the Submit() method again to submit the new
files.

After you call the object’s Submit() method, you should immediately check for
errors. If an error occurred, none of the files were submitted. The files in the
submission list are either all submitted successfully or none of them are
submitted.

Example See “Using the EcxSubmit Class” on page 114.

See Also To specify the sender, call the SetSender() method on page 125. To specify
the recipient, call the SetRecipient() method on page 124. To specify the
sender’s password, call the SetPassword() method on page 124. To specify
the map file, call the SetMapName() method on page 123. To specify the
configuration file, call the SetEcxIniFileName() method on page 123. To add
files, call the AddFile() method on page 118. To remove files from the list, call
the ClearFileList() method on page 119.
126 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

9
The EcxLogin Class
his chapter describes the EcxLogin class, which allows a user to access
the database. This chapter contains the following sections:

• About the EcxLogin Class

• Using the EcxLogin Class

• EcxLogin Class Reference

T

02 July 99 Chapter 9, The EcxLogin Class 127

About the EcxLogin Class
About the EcxLogin Class
Objects of the EcxLogin class represent connections to the database. To log
into the database, you can create an EcxLogin object and call the object’s
Login method. When you no longer need the connection to the database, you
can call the object’s Logout method.

Methods Summary list:

Using the EcxLogin Class
The following example shows how to create an EcxLogin object and call the
object’s Login method to create a connection to the database.

EcxLogin * login(const char *name, const char *password) {

EcxLogin *pLogin = NULL;

if((pLogin = new EcxLogin())->Errnum()) {
cout << "EcxLogin Object Error:" << endl;
cout << "\tErrnum: " << pLogin->Errnum() << endl;
cout << "\tErrmsg: " << pLogin->Errmsg() << endl;
cout << endl;
return(NULL);

}

if((pLogin->Login(name, password)).Errnum()) {
cout << "EcxLogin.Login() Failed for user: " << name << endl;
cout << "\tErrnum: " << pLogin->Errnum() << endl;
cout << "\tErrmsg: " << pLogin->Errmsg() << endl;
cout << endl;
delete pLogin;

Constructor and destructor

EcxLogin() Creates an EcxLogin object.

~EcxLogin() Destroys an EcxLogin object.

Logging in and out

Login() Logs into the database.

Logout() Logs out of the database.

Determining the type of member

MemberType() Determines the type of member currently logged in.
128 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxLogin Class Reference
return(NULL);
}
return(pLogin);

}

EcxLogin Class Reference
Interface ecxlogin.h

Superclasses None

Subclasses EcxBase

Friend Classes None

Syntax class EcxLogin : public EcxBase { ... };

Constructor and Destructor

EcxLogin()

Creates an EcxLogin object.

Syntax EcxLogin(void);

Example See “Using the EcxLogin Class” on page 128.

~EcxLogin()

Destroys an EcxLogin object.

Syntax virtual ~EcxLogin();

Methods

This section describes the methods of the EcxLogin class.
02 July 99 Chapter 9, The EcxLogin Class 129

EcxLogin Class Reference
Login()

Logs into the database.

Syntax virtual EcxLogin& Login(const char *username, const char
*password);

Parameters The Login() method has the following parameters:

Returns A pointer to this EcxLogin object.

Discussion The user name must match that of a member in the database. If the member is
a trusted member, the password in not checked.

Example See “Using the EcxLogin Class” on page 128.

Logout()

Logs out of the database.

Syntax virtual EcxLogin& Logout(void);

Returns A pointer to this EcxLogin object.

MemberType()

Determines the type of member currently logged in.

Syntax unsigned int MemberType();

Parameters The MemberType() method has the following parameters:

Returns An unsigned integer that contains the type of member.

username A pointer to a character string that represents the user name.

password A pointer to a character string that represents the password.

type An unsigned integer that specifies whether the member is an
administrator.
130 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxLogin Class Reference
Discussion A type of ADMINISTRATOR indicates that the member is an administrator. A
type of MEMBER indicates that the member is not an administrator. If no
member is currently logged in, the MemberType() method returns a type of
MEMBER. The MemberType() method does not modify the database.

See also “Class Variables” on page 140.
02 July 99 Chapter 9, The EcxLogin Class 131

EcxLogin Class Reference
132 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

10
The EcxMember Class
his chapter describes the EcxMember class, which represents member
records in an ECXpert database. This chapter contains the following

sections:

• About the EcxMember Class

• Using the EcxMember Class

• EcxMember Class Reference

T

02 July 99 Chapter 10, The EcxMember Class 133

About the EcxMember Class
About the EcxMember Class
The EcxMember class represents member records in an ECXpert database.
Administrators can manipulate any member record for their trading partner-
ships; non-administrators can only change contact information in their own
record. A user must be logged in to the database before accessing a record.

Methods Summary list:

Constructor and destructor

EcxMember() Creates an EcxMember object.

~EcxMember() Destroys an EcxMember object.

Allowing database access

SetLogin() Allows the object to access the database.

Adding, retrieving, changing and deleting member records

Add() Adds a member record to the database.

Get() Retrieves a member record from the database.

Change() Changes a member record in the database.

Delete() Deletes a member from the database.

Listing member records

List() Retrieves a list of member records from the database.

More() Determines whether more records are left in the list.

Next() Associates the object with the next record in the list.

Resetting an object’s state

Clear() Clears the state associated with an object, including its list.

Accessing key fields

Name() Determines or specifies the name of the member.

Accessing contact information

ContactName() Determines or specifies the name of the contact person for this
member.

ContactCompany() Determines or specifies the contact’s company.

ContactAddress1() Determines or specifies the first line of the contact’s address.

ContactAddress2() Determines or specifies the second line of the contact’s
address.

ContactCity() Determines or specifies the contact’s city.

ContactState() Determines or specifies the contact’s state.
134 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxMember Class
Using the EcxMember Class
The following sections show how to

• create member objects

• add members to the database

• change members’ records in the database

• list members in the database

• delete members from the database

ContactZip() Determines or specifies the contact’s zip or postal code.

ContactCountry() Determines or specifies the contact’s country.

ContactPhone() Determines or specifies the contact’s phone number.

ContactFax() Determines or specifies the contact’s fax number.

ContactEmailId() Determines or specifies the contact’s e-mail address.

Accessing other fields

Description() Determines or specifies the member’s description.

Type() Determines or specifies the type of member.

ParentName() Determines the name of the parent member.

IsGroup() Determines or specifies whether the member is a group or
individual.

Active() Determines or specifies whether the member is active.

Password() Determines or specifies the member’s password.

Trusted() Determines or specifies whether the member is trusted.

ObjPerm() Determines or specifies the record’s access permissions.

ModByGroup() Determines the group that last modified the record.

ModByUser() Determines the user that last modified the record.

ModDt() Determines the date the record was last modified.
02 July 99 Chapter 10, The EcxMember Class 135

Using the EcxMember Class
Creating Member Objects

The following example shows how to create an EcxMember object and how to
allow access to the database by calling the object’s SetLogin() method:

EcxMember * make_memberobj(EcxLogin * pLogin) {

EcxMember * pMember = NULL;

if((pMember = new EcxMember())->Errnum()) {
cout << "EcxMember Object Error:" << endl;
cout << "\tErrnum: " << pMember->Errnum() << endl;
cout << "\tErrmsg: " << pMember->Errmsg() << endl;
cout << endl;
return(NULL);

}

if((pMember->SetLogin(*pLogin)).Errnum()) {
cout << "EcxMember.SetLogin() Failed:" << endl;
cout << "\tErrnum: " << pMember->Errnum() << endl;
cout << "\tErrmsg: " << pMember->Errmsg() << endl;
cout << endl;
delete pMember;
return(NULL);

}

return(pMember);
}

Alternatively, you can pass the login object to the EcxMember constructor
without having to call SetLogin().

Adding Members

The following example shows how to add a member record to the database. An
administrator’s login must be associated with the object you want to add.

int add_member(EcxMember *pMember, const char *name) {

 pMember->Clear();

 pMember->Name(name);
 pMember->Description("This is the description");
 pMember->Type(pMember->MEMBER);
 pMember->IsGroup(FALSE);
 pMember->Active(TRUE);
136 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxMember Class
 pMember->Password(name);
 pMember->Trusted(FALSE);
 pMember->ContactName("Jack Flack");
 pMember->ContactCompany("Company AAA");
 pMember->ContactAddress1("109 Short Stack St.");
 pMember->ContactAddress2("Apt. #12");
 pMember->ContactCity("Big City");
 pMember->ContactState("New California");
 pMember->ContactZip("12666");
 pMember->ContactCountry("AUFD");
 pMember->ContactPhone("123 456-7890");
 pMember->ContactFax("123 456-7899");
 pMember->ContactEmailId("crank@flipant.org");
 pMember->ObjPerm(755);

 if((pMember->Add()).Errnum()) {
 cout << "EcxMember.add() Failed for user: " << name << endl;
 cout << "\tErrnum: " << pMember->Errnum() << endl;
 cout << "\tErrmsg: " << pMember->Errmsg() << endl;
 return(pMember->Errnum());
 }

 cout << "*** Added member: " << name << endl;

 return(0);
}

Changing Members’ Fields

The following example shows how to change the contact’s e-mail address. The
Get() method retrieves the record to modify using the key field, which is
specified by calling the object’s Name() method.

Note Non-administrators can only retrieve their own record and, thus, change only
their own record.

int change_email(EcxMember * pMember, const char * name) {

 char email[1024];

 pMember->Clear();
 pMember->Name(name);

 if((pMember->Get()).Errnum()) {
 cout << "EcxMember.Get() Failed for user: " << name << endl;
 cout << "\tErrnum: " << pMember->Errnum() << endl;
 cout << "\tErrmsg: " << pMember->Errmsg() << endl;
02 July 99 Chapter 10, The EcxMember Class 137

Using the EcxMember Class
 return(pMember->Errnum());
 }

 strcpy(email, name);
 strcat(email, "@heaven.org");

 pMember->ContactEmailId(email);

 if((pMember->Change()).Errnum()) {
 cout << "EcxMember.Change() Failed for user: " << name << endl;
 cout << "\tErrnum: " << pMember->Errnum() << endl;
 cout << "\tErrmsg: " << pMember->Errmsg() << endl;
 return(pMember->Errnum());
 }

 return(0);
}

Listing Members

The following example shows how to create a list of all members.

Note If the login object specifies a non-administrator, this example returns only that
member’s record.

int list(EcxMember *pMember) {

 pMember->Clear();

 if((pMember->List()).Errnum()) {
 cout << "EcxMember.List() Failed:" << endl;
 cout << "\tErrnum: " << pMember->Errnum() << endl;
 cout << "\tErrmsg: " << pMember->Errmsg() << endl;
 return(pMember->Errnum());
 }

 cout << "*** Listing members" << pMember->More();
 cout << " records found. ***" << endl;

 while(pMember->More()) {
 cout << pMember->Name() << ":";
 cout << pMember->Type() << ":";
 cout << pMember->ContactName() << ":";
 cout << pMember->ContactAddress1() << ":";
 cout << pMember->ContactAddress2() << ":";
 cout << pMember->ContactEmailId() << endl;
 pMember->Next();
138 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
 }

 return(0);
}

Deleting Members

The following example shows how to delete a member record from the
database. An administrator’s login must be associated with the object you want
to delete.

int delete_member(EcxMember *pMember, const char * name) {

 pMember->Clear();
 pMember->Name(name);

 if((pMember->Delete()).Errnum()) {
 cout << "EcxMember.Delete() Failed for user: " << name << endl;
 cout << "\tErrnum: " << pMember->Errnum() << endl;
 cout << "\tErrmsg: " << pMember->Errmsg() << endl;
 return(pMember->Errnum());
 }

 cout << "*** Deleted member: " << name << endl;

 return(0);
}

EcxMember Class Reference
Interface ecxmember.h

Superclasses EcxBase

Subclasses None

Friend Classes None

Syntax class EcxMember : public EcxBase { ... };
02 July 99 Chapter 10, The EcxMember Class 139

EcxMember Class Reference
Class Variables

The following class variables allow you to identify the member as either an
administrator or an ordinary member:

Syntax static int ADMINISTRATOR;

static int MEMBER;

Constructor and Destructor

EcxMember()

Creates an EcxMember object.

Syntax EcxMember(void);

EcxMember(EcxLogin& login);

Parameters The constructor has the following parameters:

Discussion The first form of the constructor allows you to create a stack-based object. The
second form of the constructor requires that you create an EcxLogin object
before you create this object.

Example See “Creating Member Objects” on page 136.

See also The SetLogin() method on page 154. The EcxLogin class on page 127.

~EcxMember()

Destroys an EcxMember object.

Syntax virtual ~EcxMember(void);

ADMINISTRATOR Administrator

MEMBER Member (non-administrator)

login The login object to associate with this member object.
140 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
Discussion The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Clear() method. The destructor
does not destroy the associated EcxLogin object.

See also The Clear() method on page 142.

Methods

This section describes the methods of the EcxMember class.

Active()

Determines or specifies whether the member is active.

Syntax unsigned int Active() const;

void Active(const unsigned int status);

Parameters The Active() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
status.

Discussion Use the first form of the method to determine whether the member is active.
Use the second form to specify whether the member is active. A status of TRUE
(1) indicates that the member is active. A status of FALSE (0) indicates that the
member is inactive. The Active() method does not modify the database.

Example See “Adding Members” on page 136.

Add()

Adds a member record to the database.

Syntax EcxMember& Add(void);

Returns A reference to this member object.

status An unsigned integer that specifies whether the member is
active.
02 July 99 Chapter 10, The EcxMember Class 141

EcxMember Class Reference
Discussion You must be an administrator and be logged in before calling this method. You
must specify the member’s name in the object, by calling the Name() method,
before calling the Add() method.

The parent name and the group-modified-by fields are set to the parent name
of the logged-in user; by default, this is ‘rootgroup’. The user-modified-by field
is set to the name of the logged-in user. Any other fields not specified in the
object will become 0 or NULL in the database.

Example See “Adding Members” on page 136.

See also The Name() method on page 152.

Change()

Changes a member record in the database.

Syntax EcxMember& Change(void);

Returns A reference to this member object.

Discussion This method updates the last record retrieved by calling the object’s Get(),
List(), or Next() method. Administrators may change any field for which a
mutator method is provided. Non-administrators can only change the contact
information in their own record. Specifically, a non-administrator cannot
change the contents of the trusted, active, parent name, or isGroup fields.

Warning If you do not call the object’s Get(), List(), or Next() method first, the
object’s name field, which is set by calling the Name() method, specifies the
record that is changed. In this case, the record is completely overwritten using
the object’s fields. Any fields not set in the object will be replaced by 0 or NULL
in the database.

Example See “Changing Members’ Fields” on page 137.

See also The Get() method on page 149. The List() method on page 150. The
Next() method on page 152. The Name() method on page 152.

Clear()

Clears the state associated with an object, including its list.
142 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
Syntax void Clear(void);

Discussion The parent name is set to ‘rootgroup’. Other fields of the object are reset to 0 or
NULL. A list contains no records.

Example See “Listing Members” on page 138.

ContactAddress1()

Determines or specifies the first line of the contact’s address.

Syntax const char* ContactAddress1() const;

void ContactAddress1(const char* addr1);

Parameters The ContactAddress1() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the address line.

Discussion Use the first form of the method to determine the first line of the address. Use
the second form to specify the address line. The ContactAddress1()
method does not modify the database.

Example See “Adding Members” on page 136.

ContactAddress2()

Determines or specifies the second line of the contact’s address.

Syntax const char* ContactAddress2() const;

void ContactAddress2(const char* addr2);

Parameters The ContactAddress2() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the address line.

addr1 A pointer to a character string that contains the address line.

addr2 A pointer to a character string that contains the address line.
02 July 99 Chapter 10, The EcxMember Class 143

EcxMember Class Reference
Discussion Use the first form of the method to determine the second line of the address.
Use the second form to specify the address line. The ContactAddress2()
method does not modify the database.

Example See “Adding Members” on page 136.

ContactCity()

Determines or specifies the second line of the contact’s city.

Syntax const char* ContactCity() const;

void ContactCity(const char* city);

Parameters The ContactCity() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the city.

Discussion Use the first form of the method to determine the city. Use the second form to
specify the city. The ContactCity() method does not modify the database.

Example See “Adding Members” on page 136.

ContactCompany()

Determines or specifies the contact’s company.

Syntax const char* ContactCompany() const;

void ContactCompany(const char * company);

Parameters The ContactCompany() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the company name.

city A pointer to a character string that contains the city.

company A pointer to a character string that contains the company
name.
144 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
Discussion Use the first form of the method to determine the company name. Use the
second form to specify the company name. The ContactCompany() method
does not modify the database.

Example See “Adding Members” on page 136.

ContactCountry()

Determines or specifies the contact’s country.

Syntax const char* ContactCountry() const;

void ContactCountry(const char* country);

Parameters The ContactCountry() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the country name.

Discussion Use the first form of the method to determine the country. Use the second form
to specify the country. The ContactCountry() method does not modify the
database.

Example See “Adding Members” on page 136.

ContactEmailId()

Determines or specifies the contact’s e-mail address.

Syntax const char* ContactEmailId() const;

void ContactEmailId(const char* emailID);

Parameters The ContactEmailId() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the e-mail address.

country A pointer to a character string that contains the country name.

emailID A pointer to a character string that contains the e-mail address.
02 July 99 Chapter 10, The EcxMember Class 145

EcxMember Class Reference
Discussion Use the first form of the method to determine the e-mail address. Use the
second form to specify the e-mail address. The ContactEmailId() method
does not modify the database.

Example See “Adding Members” on page 136.

ContactFax()

Determines or specifies the contact’s fax number.

Syntax const char* ContactFax() const;

void ContactFax(const char* fax);

Parameters The ContactFax() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the fax number.

Discussion Use the first form of the method to determine the fax number. Use the second
form to specify the fax number. The ContactFax() method does not modify
the database.

Example See “Adding Members” on page 136.

ContactName()

Determines or specifies the name of the contact person for this member.

Syntax const char* ContactName() const;

void ContactName(const char* name);

Parameters The ContactName() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the name.

fax A pointer to a character string that contains the fax number.

name A pointer to a character string that contains the contact’s name.
146 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
Discussion Use the first form of the method to determine the contact’s name. Use the
second form to specify the name. The ContactName() method does not
modify the database.

Example See “Adding Members” on page 136.

ContactPhone()

Determines or specifies the contact’s phone number.

Syntax const char* ContactPhone() const;

void ContactPhone(const char* phone);

Parameters The ContactPhone() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the phone number.

Discussion Use the first form of the method to determine the phone number. Use the
second form to specify the phone number. The ContactPhone() method
does not modify the database.

Example See “Adding Members” on page 136.

ContactState()

Determines or specifies the contact’s state.

Syntax const char* ContactState() const;

void ContactState(const char* state);

Parameters The ContactState() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the state.

phone A pointer to a character string that contains the phone number.

state A pointer to a character string that contains the state.
02 July 99 Chapter 10, The EcxMember Class 147

EcxMember Class Reference
Discussion Use the first form of the method to determine the state. Use the second form to
specify the state. The ContactState() method does not modify the
database.

Example See “Adding Members” on page 136.

ContactZip()

Determines or specifies the contact’s zip or postal code.

Syntax const char* ContactZip() const;

void ContactZip(const char* zip);

Parameters The ContactZip() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the zip or postal code.

Discussion Use the first form of the method to determine the zip or postal code. Use the
second form to specify the zip or postal code. The ContactZip() method
does not modify the database.

Example See “Adding Members” on page 136.

Delete()

Deletes a member from the database.

Syntax EcxMember& Delete(void);

Returns A reference to this member object.

Discussion You must be an administrator and be logged in before calling this method. You
must specify the member’s name in the object by calling the Name() method
before you call the Delete() method. After this method executes, the object
is reset; the parent name is set to ‘rootgroup’ and other fields of the object are
reset to 0 or NULL. A list contains no records.

zip A pointer to a character string that contains the zip or postal
code.
148 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
Warning In addition to deleting the membership record, the Delete() method also
deletes the partnerships and services associated with the member.

Example See “Deleting Members” on page 139.

See also The Name() method on page 152.

Description()

Determines or specifies the member’s description.

Syntax const char* Description() const;

void Description(const char* desc);

Parameters The Description() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the description.

Discussion Use the first form of the method to determine the description. Use the second
form to specify the description. The Description() method does not modify
the database.

Example See “Adding Members” on page 136.

Get()

Retrieves a member record from the database.

Syntax EcxMember& Get(void);

Returns A reference to this member object.

Discussion Administrators may retrieve any membership record. Non-administrators can
only retrieve their own record. You must specify the member’s name in the
object by calling the Name() method before you call the Get() method.

Example See “Changing Members’ Fields” on page 137.

See also The Name() method on page 152.

desc A pointer to a character string that contains the description.
02 July 99 Chapter 10, The EcxMember Class 149

EcxMember Class Reference
IsGroup()

Determines or specifies whether the member is a group or individual.

Syntax unsigned int IsGroup() const;

void IsGroup(const unsigned int status);

Parameters The IsGroup() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
status.

Discussion Use the first form of the method to determine whether the member is a group.
Use the second form to specify whether the member is a group. A status of
TRUE (1) indicates that the member is a group. A status of FALSE (0) indicates
that the member is an individual. The IsGroup() method does not modify the
database.

Example See “Adding Members” on page 136.

List()

Retrieves a list of member records from the database.

Syntax EcxMember& List(void);

Returns A reference to this member object.

Discussion If you specify the member’s name in the object by calling the Name() method
first, only the record matching with the specified name will be retrieved. After
calling the List() method, the member object contains fields from the first
record from the list.

Example See “Listing Members” on page 138.

See also The Name() method on page 152.

status An unsigned integer that specifies whether the member is a
group.
150 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
ModByGroup()

Determines the group that last modified the record.

Syntax const char* ModByGroup() const;

Returns A pointer to a character string that contains the group.

ModByUser()

Determines the user that last modified the record.

Syntax const char* ModByUser() const;

Returns A pointer to a character string that contains the user name.

ModDt()

Determines the date the record was last modified.

Syntax const char* ModDt() const;

Returns A pointer to a character string that contains the date.

More()

Determines whether more records are left in the list.

Syntax long More(void);

Returns A long integer that contains the number of records not yet accessed from the
list.

Discussion After calling the List() method and before calling the Next() method, the
More() method returns the total number of records in the list. All records have
been accessed when the More() method returns 0.

Example See “Listing Members” on page 138.

See also The List() method on page 150. The Next() method on page 152.
02 July 99 Chapter 10, The EcxMember Class 151

EcxMember Class Reference
Name()

Determines or specifies the name of the member.

Syntax const char* Name() const;

void Name(const char* name);

Parameters The Name() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the name.

Discussion Use the first form of the method to determine the member’s name. Use the
second form to specify the name. The Name() method does not modify the
database.

Example See “Adding Members” on page 136.

Next()

Associates the object with the next record in the list.

Syntax EcxMember& Next(void);

Returns A reference to this member object.

Discussion The Next() method sets the fields in the object to match those in the next
record in the list. The Next() method decrements the number of records not
yet accessed, which is returned by the More() method.

Warning Do not call the Next() method if the More() method returns a value less
than 1; the results are unpredictable.

Example See “Listing Members” on page 138.

See also The More() method on page 151.

name A pointer to a character string that contains the member’s
name.
152 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
ObjPerm()

Determines or specifies the record’s access permissions.

Syntax unsigned int ObjPerm() const;

void ObjPerm(const unsigned int permissions);

Parameters The ObjPerm() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
permissions.

Discussion Use the first form of the method to determine the record’s access permissions.
Use the second form to specify the permissions. The ObjPerm() method does
not modify the database.

Example See “Adding Members” on page 136.

ParentName()

Determines the name of the parent member.

Syntax const char* ParentName() const;

Returns A pointer to a character string that contains the name.

Password()

Determines or specifies the member’s password.

Syntax const char* Password() const;

void Password(const char* passwd);

Parameters The Password() method has the following parameters:

permissions An unsigned integer that specifies the access permissions.

passwd A pointer to a character string that contains the password.
02 July 99 Chapter 10, The EcxMember Class 153

EcxMember Class Reference
Returns The first form of the method returns a pointer to a character string that contains
the password.

Discussion Use the first form of the method to determine the member’s password. Use the
second form to specify the password. The Password() method does not
modify the database.

Example See “Adding Members” on page 136.

SetLogin()

Allows the object to access the database.

Syntax EcxMember& SetLogin(EcxLogin& login);

Parameters The SetLogin() method has the following parameters:

Returns A reference to this member object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the SetLogin() method before using this object.

Example See “Creating Member Objects” on page 136.

See also The EcxMember constructor on page 140. The EcxLogin class on page 127.

Trusted()

Determines or specifies whether the member is trusted.

Syntax unsigned int Trusted() const;

void Trusted(const unsigned int status);

Parameters The Trusted() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
status.

login A reference to a valid EcxLogin object

status An unsigned integer that specifies whether the member is a
trusted member.
154 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxMember Class Reference
Discussion Use the first form of the method to determine whether the member is a trusted
member. Use the second form to specify whether the member is a trusted
member. A status of TRUE (1) indicates that the member is a trusted member. A
status of FALSE (0) indicates that the member is not a trusted member. The
Trusted() method does not modify the database.

Example See “Adding Members” on page 136.

Type()

Determines or specifies the type of member.

Syntax unsigned int Type() const;

void Type(const unsigned int type);

Parameters The Type() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the type.

Discussion Use the first form of the method to determine whether the member is an admin-
istrator. Use the second form to specify whether the member is an adminis-
trator. A type of ADMINISTRATOR indicates that the member is an
administrator. A type of MEMBER indicates that the member is not an adminis-
trator. The Type() method does not modify the database.

Example See “Adding Members” on page 136.

See also “Class Variables” on page 140.

type An unsigned integer that specifies whether the member is an
administrator.
02 July 99 Chapter 10, The EcxMember Class 155

EcxMember Class Reference
156 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

11
The EcxAddresses Class
his chapter describes the EcxAddresses class, which defines objects that
represent trading addresses. This chapter contains the following sections:

• About the EcxAddresses Class

• Using the EcxAddresses Class

• EcxAddresses Class Reference

T

02 July 99 Chapter 11, The EcxAddresses Class 157

About the EcxAddresses Class
About the EcxAddresses Class
The EcxAddresses class represents trading address records in an ECXpert
database. Administrators can manipulate any address record; non-administrators
can only add and delete their own address records. A user must be logged in to
the database before accessing a record.

Methods Summary list:

Using the EcxAddresses Class
The following example shows how to create an EcxAddresses object and set
the login to provide database access for the object.

BOOL ImportMad::MakeAddressObj()
{

m_pLogin = new EcxLogin();

Constructor and destructor

EcxAddresses() Creates an EcxAddresses object.

~EcxAddresses() Destroys an EcxAddresses object.

Allowing database access

SetLogin() Allows the object to access the database.

Adding and deleting address records

Add() Adds an address record to the database.

Delete() Deletes an address record from the database.

Listing address records

List() Retrieves a list of address records from the database.

More() Determines whether more records are left in the list.

Next() Associates the object with the next record in the list.

Resetting an object’s state

Clear() Clears the state associated with an object, including its list.

Accessing key fields

Member() Determines or specifies a member.

Qual() Determines or specifies a member’s trading address qualifier.

QualId() Determines or specifies a member’s trading address.
158 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxAddresses Class Reference
if (m_pLogin == NULL)
{

SetGeneralError(INSUFFICIENT_MEMORY, m_fdiscard);
return FALSE;

}
else if (m_pLogin->Errnum())
{

PrintEcxMessage("EcxLogin()", m_pLogin, 0, 0);
m_pLogin = NULL;
return FALSE;

}
if ((m_pLogin->Login(GetUserName(), GetPassword())).Errnum())
{

PrintEcxMessage("EcxLogin()", m_pLogin, 0, 0);
return FALSE;

}

m_pAddress = new EcxAddresses();
if (m_pAddress == NULL)
{

SetGeneralError(INSUFFICIENT_MEMORY, m_fdiscard);
return FALSE;

}
else if (m_pAddress ->Errnum())
{

PrintEcxMessage("EcxAddresses()", m_pAddress, 0, 0);
m_pAddress = NULL;
return FALSE;

}

if ((m_pAddress ->SetLogin(*m_pLogin)).Errnum())
{

PrintEcxMessage("EcxAddresses()", m_pAddress, 0, 0);
return FALSE;

}
return TRUE;

}

EcxAddresses Class Reference
Interface ecxaddresses.h

Superclasses EcxBase

Subclasses None

Friend Classes None
02 July 99 Chapter 11, The EcxAddresses Class 159

EcxAddresses Class Reference
Syntax class EcxAddresses : public EcxBase { ... };

Constructor and Destructor

EcxAddresses()

Creates an EcxAddresses object.

Syntax EcxAddresses(void);

EcxAddresses(EcxLogin& login);

Discussion The first form of the constructor allows you to create a stack-based object. The
second form of the constructor requires that you create an EcxLogin object
before you create this object.

Example See “Using the EcxAddresses Class” on page 158.

See also The SetLogin() method on page 164. The EcxLogin class on page 127.

~EcxAddresses()

Destroys an EcxAddresses object.

Syntax ~EcxAddresses(void);

Discussion The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Clear() method. The destructor
does not destroy the associated EcxLogin object.

See also The Clear() method on page 161.

Methods

This section describes the methods of the EcxAddresses class.
160 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxAddresses Class Reference
Add()

Adds an address record to the database.

Syntax EcxAddresses& Add(void);

Returns A reference to this member object.

Discussion Non-administrators can only add addresses for themselves. Administrators can
add addresses for any member. You must specify the member’s name in the
object, by calling the Member() method, before calling the Add() method.
The combination of qualifier and qualifier ID must be unique for the member.

The parent name and the group-modified-by fields are set to the parent name
of the logged-in user; by default, this is ‘rootgroup’. The user-modified-by field
is set to the name of the logged-in user. Any other fields not specified in the
object will become 0 or NULL in the database.

See also The Member() method on page 162.

Clear()

Clears the state associated with an object, including its list.

Syntax void Clear(void);

Delete()

Deletes an address from the database.

Syntax EcxAddresses& Delete(void);

Returns A reference to this member object.

Discussion You must be an administrator and be logged in before calling this method.

Warning All records whose qualifiers and qualifier IDs match the fields of this object are
deleted; the member name is not used.
02 July 99 Chapter 11, The EcxAddresses Class 161

EcxAddresses Class Reference
List()

Retrieves a list of address records from the database.

Syntax EcxAddresses& List(void);

Returns A reference to this member object.

Discussion After calling the List() method, the address object contains fields from the
first record from the list.

Member()

Determines or specifies the name of the member.

Syntax const char* Member() const;

void Member(const char* name);

Parameters The Member() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the name.

Discussion Use the first form of the method to determine the member’s name. Use the
second form to specify the name. The Member() method does not modify the
database.

More()

Determines whether more records are left in the list.

Syntax long More(void);

Returns A long integer that contains the number of records not yet accessed from the
list.

name A pointer to a character string that contains the member’s
name.
162 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxAddresses Class Reference
Discussion After calling the List() method and before calling the Next() method, the
More() method returns the total number of records in the list. All records have
been accessed when the More() method returns 0.

Next()

Associates the object with the next record in the list.

Syntax EcxAddresses& Next(void);

Returns A reference to this member object.

Discussion The Next() method sets the fields in the object to match those in the next
record in the list. The Next() method decrements the number of records not
yet accessed, which is returned by the More() method.

Warning Do not call the Next() method if the More() method returns a value less
than 1; the results are unpredictable.

See also The More() method on page 162.

Qual()

Determines or specifies a member’s trading address qualifier.

Syntax const char* Qual() const;

void Qual(const char* qualifier);

Parameters The Qual() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the qualifier.

Discussion Use the first form of the method to determine the qualifier. Use the second
form to specify the qualifier. The Qual() method does not modify the
database.

qualifier A pointer to the character string that contains the qualifier.
02 July 99 Chapter 11, The EcxAddresses Class 163

EcxAddresses Class Reference
QualId()

Determines or specifies a member’s trading address.

Syntax const char* QualId() const;

void QualId(const char* id);

Parameters The QualId() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the trading address.

Discussion Use the first form of the method to determine the trading address. Use the
second form to specify the trading address. The QualId() method does not
modify the database.

SetLogin()

Allows the object to access the database.

Syntax EcxAddresses& SetLogin(EcxLogin& login);

Parameters The SetLogin() method has the following parameters:

Returns A reference to this member object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the SetLogin() method before accessing this object.

See also The EcxAddresses constructor on page 160. The EcxLogin class on
page 127.

id A pointer to the character string that contains the trading
address.

login A reference to a valid EcxLogin object
164 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

12
Partnership-Related Classes
his chapter describes the EcxPartnership class, which represents a
view of partnership records and related standards information, group, and

document information records in an ECXpert database. This chapter also
describes the EcxPartnerId class, which represents key values for
EcxPartnership objects. This chapter contains the following sections:

• About the EcxPartnership Class

• Using the EcxPartnership Class

• EcxPartnership Class Reference

• About the EcxPartnerID Class

• EcxPartnerID Class Reference

T

02 July 99 Chapter 12, Partnership-Related Classes 165

About the EcxPartnership Class
About the EcxPartnership Class
The EcxPartnership class represents a view on the following kinds of
records in an ECXpert database:

• partnerships

• EDI standards information

• partnership groups

• document types

A record in the view represents a partnership record whose ID matches a
standards information ID, a group ID and a document type ID and whose
group type matches the document type.

Only administrators can add, change, or delete records using this view. An
administrator can retrieve any record from the view; a non-administrator can
only retrieve records from the view that includes the user as either a sender or
receiver. A user must be logged in to the database before accessing a record
through the view.

Methods Summary list:

Constructor and destructor

EcxPartnership() Creates an EcxPartnership object.

~EcxPartnership() Destroys an EcxPartnership object.

Allowing database access

SetLogin() Allows the object to access the database.

Adding, retrieving, changing and deleting partnership view-related records

Add() Adds partnership view-related records to the data-
base.

Get() Retrieves partnership view-related records from the
database.

Change() Changes partnership view-related records in the data-
base.

Delete() Deletes partnership view-related records from the
database.

Listing partnership records
166 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 About the EcxPartnership Class
List() Retrieves a list of partnership view-related records
from the database.

More() Determines whether more records are left in the list.

Next() Associates the object with the next record in the list.

Resetting an object’s state

Clear() Clears the state associated with an object, including its
list.

Accessing key fields

PartnerId() Determines or specifies the partnership ID.

DocType() Determines or specifies the kind of EDI document.

GroupType() Determines or specifies the kind of EDI documents in
the group.

Accessing partnership information

SenderName() Determines or specifies the sender’s member name.

SenderQual() Determines or specifies the sender’s trading address
qualifier.

SenderQualId() Determines or specifies the sender’s trading address.

SenderCertificateType() Determines or specifies the sender’s certificate type.

ReceiverName() Determines or specifies the receiver’s member name.

ReceiverQual() Determines or specifies the receiver’s trading address
qualifier.

ReceiverQualId() Determines or specifies the receiver’s trading address

ReceiverCertificateType() Determines or specifies the receiver’s certificate type.

Active() Determines or specifies whether the partnership is
active.

Security() Determines or specifies the kind of security.

Description() Determines or specifies the partnership’s description.

Accessing standards information

StandardName() Determines or specifies the name of the EDI standard.

StandardVersion() Determines or specifies the standard’s version num-
ber.

StandardRelease() Determines or specifies the standard’s release num-
ber.

IntchngLastControlNumber() Determines or specifies the last interchange control
number generated.
02 July 99 Chapter 12, Partnership-Related Classes 167

About the EcxPartnership Class
IntchngLock() Determines or specifies whether the document has
been read at the interchange level.

IntchngGenerateAck() Determines or specifies whether to generate inter-
change acknowledgments flags.

IntchngAckWaitPeriod() Determines or specifies the number of minutes to wait
before the acknowledgment becomes overdue.

TestProductionFlag() Determines or specifies whether the partnership is
used for testing or production.

SegmentTerminator() Determines or specifies the segment terminator char-
acter.

ElementSeparator() Determines or specifies the data element terminator
character.

SubElementSeparator() Determines or specifies the data subelement termina-
tor character.

DecimalPointCharacter() Determines or specifies the decimal point character.

ReleaseCharacter() Determines or specifies the release character.

OutStandard() Determines or specifies the interchange standard user
wishes to appear in bundled EDI documents.

OutVersion() Determines or specifies the interchange version user
wishes to appear in bundled EDI documents

OutRelease() Determines or specifies the interchange release user
wishes to appear in bundled EDI documents.

GenOptEnv() Determines or specifies the enveloping options.

Accessing group information

GroupLastControlNumber() Determines or specifies the last group control number
generated.

GroupLock() Determines or specifies whether the document has
been read at the group level.

GroupGenerateDocAck() Determines or specifies the to generate group
acknowledgments flags

SndrAppQual() Determines or specifies the sending member main
trading address.

SndrAppCode() Determines or specifies the application sender code.

RcvrAppQual() Determines or specifies the receiving member main
trading address.

RcvrAppCode() Determines or specifies the application receiver code.

Accessing document type specific information
168 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxPartnership Class
Using the EcxPartnership Class
The following sections show how to

• create partnership objects

• add partnerships to the database

• list partnerships in the database

DocPriority() Determines or specifies the document processing pri-
ority.

MapName() Determines or specifies the map file name.

MapDirection() Determines or specifies the document translation
type.

AckExpected() Determines or specifies the number of minutes to wait
before an acknowledgment becomes overdue.

DocLastControlNumber() Determines or specifies the last document control
number generated.

DocLock() Determines or specifies whether the document has
been read.

PrimaryXportType() Determines or specifies the primary transport proto-
col.

PrimaryXportParam() Determines or specifies the primary transport protocol
parameter.

SecondaryXportType() Determines or specifies the secondary transport proto-
col.

SecondaryXportParam() Determines or specifies the secondary transport proto-
col parameter.

SendType() Determines or specifies when the document is to be
sent.

DeleteWaitPeriod() Determines or specifies the number of days to retain
documents before deleting them.

ArchiveWaitPeriod() Determines or specifies the number of days to retain
documents before archiving them.

PreEnveloped() Determines or specifies whether documents are
preenveloped.
02 July 99 Chapter 12, Partnership-Related Classes 169

Using the EcxPartnership Class
• delete partnerships from the database

Creating Partnership Objects

The following example shows how to create an EcxPartnership object and
how to allow access to the database by calling the object’s SetLogin()
method:

EcxPartnership * make_partnershipobj(EcxLogin * pLogin) {

 EcxPartnership * pPartnership = NULL;

 if((pPartnership = new EcxPartnership())->Errnum()) {
 cout << "EcxPartnership Object Error:" << endl;
 cout << "\tErrnum: " << pPartnership->Errnum() << endl;
 cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
 cout << endl;
 return(NULL);
 }

 if((pPartnership->SetLogin(*pLogin)).Errnum()) {
 cout << "EcxPartnership.SetLogin() Failed:" << endl;
 cout << "\tErrnum: " << pPartnership->Errnum() << endl;
 cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
 cout << endl;
 delete pPartnership;
 return(NULL);
 }

 return(pPartnership);
}

Alternatively, you can pass the login object to the EcxPartnership
constructor without having to call SetLogin().

Adding Partnerships

The following example shows how to add records associated with a
partnership view to the database. An administrator’s login must be associated
with the object you want to add.

int add_partnership(EcxPartnership *pPartnership,
 const char *name1,
 const char *name2,
170 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxPartnership Class
 const char *doctype) {

pPartnership->Clear();
pPartnership->SenderName(name1);
pPartnership->SenderQual("NONE");
pPartnership->SenderQualId(name1);
pPartnership->ReceiverName(name2);
pPartnership->ReceiverQual("NONE");
pPartnership->ReceiverQualId(name2);
pPartnership->StandardName("X");
pPartnership->StandardVersion("3");
pPartnership->StandardRelease("0");
pPartnership->GroupType("FF");
pPartnership->DocType(doctype);
pPartnership->Active(TRUE);

if((pPartnership->Add()).Errnum()) {
cout << "EcxPartnership.add() Failed for :";
cout << name1 << ":" << name2 << ":" << doctype << ":" << endl;
cout << "\tErrnum: " << pPartnership->Errnum() << endl;
cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
return(pPartnership->Errnum());

}

cout << "*** Added partnership :";
cout << name1 << ":" << name2 << ":" << doctype << ":" << endl;

return(0);
}

Listing Partnerships

The following example shows how to retrieve records for a list of views. In this
example, all view-related records are retrieved for administrators. For non-
administrators, this example retrieves all view-related records for views in
which the user is either the sender or receiver. The following rules apply to the
List() method, as well:

• If neither the sender or receiver is specified, the List() method retrieves
all view-related records for views in which the user is either the sender or
receiver.

• If only the sender is specified, the List() method retrieves all view-
related records for views in which the user is the sender.
02 July 99 Chapter 12, Partnership-Related Classes 171

Using the EcxPartnership Class
• If only the receiver is specified, the List() method retrieves all view-
related records for views in which the user is the receiver.

• If both the sender and receiver are specified, the List() method retrieves
all view-related records for views that match both the sender and receiver;
in which case, the user must be either the receiver or sender.

int list(EcxPartnership *pPartnership) {

 pPartnership->Clear();

 if((pPartnership->List()).Errnum()) {
 cout << "EcxPartnership.List() Failed:" << endl;
 cout << "\tErrnum: " << pPartnership->Errnum() << endl;
 cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
 return(pPartnership->Errnum());
 }

 cout << "*** Listing partnerships" << pPartnership->More();
 cout << " records found. ***" << endl;

 while(pPartnership->More()) {
 cout << pPartnership->SenderName() << ":";
 cout << pPartnership->ReceiverName() << ":";
 cout << pPartnership->DocType() << ":";
 cout << pPartnership->StandardName() << ":";
 cout << pPartnership->StandardVersion() << ":";
 cout << pPartnership->GroupType() << endl;

 pPartnership->Next();
 }

 return(0);
}

The following example shows how to retrieve records for two lists of views.
The sender is used to filter the first list. The receiver is used to filter the second
list. For administrators, the example shows how to retrieve all view-related
records that match the respective sender and receiver. For non-administrators,
the example shows how to retrieve these records as long as the user is the
sender in the first list and the receiver in the second list.

Warning For non-administrators, calling the List() method in this example mutates the
sender or receiver name to match the user name if the names do not already
match.
172 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxPartnership Class
int list_member(EcxPartnership *pPartnership, const char *uname) {

 pPartnership->Clear();

 pPartnership->SenderName(uname);

 if((pPartnership->List()).Errnum()) {
 cout << "EcxPartnership.List(" << uname << ",NULL) Failed:" << endl;
 cout << "\tErrnum: " << pPartnership->Errnum() << endl;
 cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
 return(pPartnership->Errnum());
 }

 cout << "*** Listing partnerships where sender is " << uname;
 cout << ". " << pPartnership->More() << " records found. ***" << endl;

 while(pPartnership->More()) {
 cout << pPartnership->SenderName() << ":";
 cout << pPartnership->ReceiverName() << ":";
 cout << pPartnership->DocType() << ":";
 cout << pPartnership->StandardName() << ":";
 cout << pPartnership->StandardVersion() << ":";
 cout << pPartnership->GroupType() << endl;

 pPartnership->Next();
 }

 pPartnership->Clear();

 pPartnership->ReceiverName(uname);

 if((pPartnership->List()).Errnum()) {
 cout << "EcxPartnership.List(NULL," << uname << ") Failed:" << endl;
 cout << "\tErrnum: " << pPartnership->Errnum() << endl;
 cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
 return(pPartnership->Errnum());
 }

 cout << "*** Listing partnerships where receiver is " << uname;
 cout << ". " << pPartnership->More() << " records found. ***" << endl;

 while(pPartnership->More()) {
 cout << pPartnership->SenderName() << ":";
 cout << pPartnership->ReceiverName() << ":";
 cout << pPartnership->DocType() << ":";
 cout << pPartnership->StandardName() << ":";
 cout << pPartnership->StandardVersion() << ":";
 cout << pPartnership->GroupType() << endl;

 pPartnership->Next();
02 July 99 Chapter 12, Partnership-Related Classes 173

EcxPartnership Class Reference
 }

 cout << endl;

 return(0);
}

Deleting Partnerships

The following example shows how to delete the records associated with a
partnership view from the database. All records matching the specified sender
name, receiver name, and document type are deleted. An administrator’s login
must be associated with the object you want to delete.

int del_partnership(EcxPartnership *pPartnership,
 const char *name1,
 const char *name2,
 const char *doctype) {

 pPartnership->Clear();
 pPartnership->SenderName(name1);
 pPartnership->ReceiverName(name2);
 pPartnership->DocType(doctype);

 if((pPartnership->Delete()).Errnum()) {
 cout << "EcxPartnership.Delete() Failed for : ";
 cout << name1 << ":" << name2 << ":" << doctype << ":" << endl;
 cout << "\tErrnum: " << pPartnership->Errnum() << endl;
 cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
 return(pPartnership->Errnum());
 }

 cout << "*** Deleted partnership :";
 cout << name1 << ":" << name2 << ":" << doctype << ":" << endl;

 return(0);
}

EcxPartnership Class Reference
Interface ecxpartnership.h

Superclasses EcxBase
174 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Subclasses None

Friend Classes None

Syntax class EcxPartnership : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the member as either an
administrator or an ordinary member:

Syntax static int SENDTYPE_UNKNOWN;

static int SENDTYPE_IMMEDIATE;

static int SENDTYPE_ONETIME;

static int SENDTYPE_PERIODIC;

static int SECURITY_PLAIN;

static int SECURITY_ENCRYPTED;

static int SECURITY_SIGNED;

static int SECURITY_SIGNEDANDENCRYPTED;

static int PRIORITY_UNKNOWN;

static int PRIORITY_HIGH;

static int PRIORITY_MEDIUM;

static int PRIORITY_LOW;

static int CERTTYPE_UNKNOWN;

static int CERTTYPE_SELF;

static int CERTTYPE_VERISIGN1;

static int CERTTYPE_VERISIGN2;

static int CERTTYPE_VERISIGN3;

static int ENVELOPE_UNKNOWN;

static int ENVELOPE_NONE;

static int ENVELOPE_REGULAR;

static int ENVELOPE_EDI;

static int XLATTYPE_UNKNOWN;

static int XLATTYPE_INBOUND;

static int XLATTYPE_OUTBOUND;

static int XLATTYPE_EDI2EDI;

static int XLATTYPE_APP2APP;
02 July 99 Chapter 12, Partnership-Related Classes 175

EcxPartnership Class Reference
static int XLATTYPE_NONE;

SENDTYPE_UNKNOWN Unknown send type.

SENDTYPE_IMMEDIATE Send immediately.

SENDTYPE_ONETIME Send once.

SENDTYPE_PERIODIC Send periodically.

SECURITY_PLAIN No security; base-64 encoding only.

SECURITY_ENCRYPTED Encrypted with receiver’s public key.

SECURITY_SIGNED Signed with sender’s private key.

SECURITY_SIGNEDANDENCRYPTED Signed with sender’s private key, then encrypted with
receiver’s public key.

PRIORITY_UNKNOWN Unknown priority.

PRIORITY_HIGH High priority.

PRIORITY_MEDIUM Medium priority.

PRIORITY_LOW Low priority.

CERTTYPE_UNKNOWN Unknown certificate type.

CERTTYPE_SELF Self-signed certificate type.

CERTTYPE_VERISIGN1 VeriSign class-1 certificate type.

CERTTYPE_VERISIGN2 VeriSign class-2 certificate type.

CERTTYPE_VERISIGN3 VeriSign class-3 certificate type.

ENVELOPE_UNKNOWN Unknown envelope status for document.

ENVELOPE_NONE No envelope for document.

ENVELOPE_REGULAR Enveloped document.
176 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Constructor and Destructor

EcxPartnership()

Creates an EcxPartnership object.

Syntax EcxPartnership(void);

EcxPartnership(EcxLogin& login);

Parameters The constructor has the following parameters:

Discussion The first form of the constructor allows you to create a stack-based object. The
second form of the constructor requires that you create an EcxLogin object
before you create this object.

Example See “Creating Partnership Objects” on page 170.

See also The SetLogin() method on page 205. The EcxLogin class on page 127.

~EcxPartnership()

Destroys an EcxPartnership object.

ENVELOPE_EDI Preenveloped EDI document.

XLATTYPE_UNKNOWN Unknown translation.

XLATTYPE_INBOUND EDI-to-application translation.

XLATTYPE_OUTBOUND Application-to-EDI translation

XLATTYPE_EDI2EDI EDI-to-EDI translation.

XLATTYPE_APP2APP Application-to-application translation.

XLATTYPE_NONE No translation; passthrough mode.

login The login object to associate with this partnership object.
02 July 99 Chapter 12, Partnership-Related Classes 177

EcxPartnership Class Reference
Syntax virtual ~EcxPartnership(void);

Discussion The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Clear() method. The destructor
does not destroy the associated EcxLogin object.

See also The Clear() method on page 181.

Methods

This section describes the methods of the EcxPartnership class.

AckExpected()

Determines or specifies the number of minutes to wait before an acknowl-
edgment becomes overdue.

Syntax unsigned int AckExpected() const;

void AckExpected (const unsigned int& minutes);

Parameters The AckExpected() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
number of minutes to wait before an acknowledgment becomes overdue.

Discussion Use the first form of the method to determine the number of minutes to wait
before an acknowledgment becomes overdue. Use the second form to specify
the number of minutes. The AckExpected() method does not modify the
database.

Active()

Determines or specifies whether the partnership is active.

Syntax unsigned int Active() const;

void Active(const unsigned int status);

minutes An unsigned integer that specifies the number of minutes.
178 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Parameters The Active() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
status.

Discussion Use the first form of the method to determine whether the partnership is active.
Use the second form to specify whether the partnership is active. A status of
TRUE (1) indicates that the partnership is active. A status of FALSE (0) indicates
that the partnership is inactive. The Active() method does not modify the
database.

Example “Adding Partnerships” on page 170.

Add()

Adds partnership view-related records to the database.

Syntax EcxPartnership& Add(void);

Returns A reference to this partnership object.

Discussion The Add() method adds a partnership record and its related standards infor-
mation, group, and document information records to the database. The Add()
method sets the partnership ID in the database and the partnership object.

You must be an administrator and be logged in before calling this method. You
must specify the sender name, receiver name, qualifier, qualifier ID, group
type, document type, EDI standard, and the standard’s release and version
numbers in the object, before calling the Add() method.

The group-modified-by and user-modified-by fields are set to the group and
name of the logged-in user, respectively. Acknowledgment wait periods are set
to MINUTES_IN_10_YEARS. Any other fields not specified in the object will
become 0 or NULL in the database.

Example “Adding Partnerships” on page 170.

status An unsigned integer that specifies whether the partnership is
active.
02 July 99 Chapter 12, Partnership-Related Classes 179

EcxPartnership Class Reference
See also The SenderName() method on page 203. The SenderQual() method on
page 204. The SenderQualID() method on page 204. The Receiv-
erName() method on page 197. The ReceiverQual() method on page 198.
The ReceiverQualID() method on page 198. The GroupType() method
on page 187. The DocType() method on page 185.

ArchiveWaitPeriod()

Determines or specifies the number of days to retain documents before
archiving them.

Syntax unsigned int ArchiveWaitPeriod() const;

void ArchiveWaitPeriod (const unsigned int& days);

Parameters The ArchiveWaitPeriod() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
number of days to retain documents before archiving them.

Discussion Use the first form of the method to determine the number of days to retain
documents before archiving them. Use the second form to specify the number
of days. The ArchiveWaitPeriod() method does not modify the database.

Change()

Changes partnership view-related records in the database.

Syntax EcxPartnership& Change(void);

Returns A reference to this partnership object.

Discussion You must be an administrator and be logged in before calling this method. This
method updates the last record retrieved by calling the object’s Get(),
List(), or Next() method. Only administrators may call the Change()
method. The group-modified-by and user-modified-by fields are set to the
group and name of the logged-in user, respectively. Acknowledgment wait
periods are set to MINUTES_IN_10_YEARS. Any other fields not specified in the
object will become 0 or NULL in the database.

days An unsigned integer that specifies the number of days.
180 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Warning If you do not call the object’s Get(), List(), or Next() method first, the
object’s Partnership ID field, which is set by calling the PartnerID() method,
specifies the records to change. In this case, the records are completely
overwritten using the object’s fields. Any fields not set in the object will be
replaced by 0 or NULL in the database.

See also The Get() method on page 186. The List() method on page 190. The
Next() method on page 192. The PartnerID() method on page 193.

Clear()

Clears the state associated with an object, including its list.

Syntax void Clear(void);

Discussion All fields in the object are reset to 0 or NULL. A list contains no records.

Example “Listing Partnerships” on page 171.

DecimalPointCharacter()

Determines or specifies the decimal point character.

Syntax const char* DecimalPointCharacter() const;

void DecimalPointCharacter (const char* decPt);

Parameters The DecimalPointCharacter() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the decimal point character.

Discussion Use the first form of the method to determine the decimal point character. Use
the second form to specify the decimal point character. The DecimalPoint-
Character() method does not modify the database.

decPt A pointer to a character string that contains the decimal point
character.
02 July 99 Chapter 12, Partnership-Related Classes 181

EcxPartnership Class Reference
Delete()

Deletes partnership view-related records from the database.

Syntax EcxPartnership& Delete(void);

Returns A reference to this partnership object.

Discussion You must be an administrator and be logged in before calling this method.
After this method executes, the object is reset; fields of the object are reset to 0
or NULL. A list contains no records. The partnership record is deleted from the
database. Dangling standards information, group, and document information
records, which are those records that no longer reference other records in the
database, are also deleted.

Warning You should call the object’s Get(), List(), or Next() method before calling
the Delete() method to ensure that the intended records are deleted.

Example “Deleting Partnerships” on page 174.

See also The Get() method on page 186. The List() method on page 190. The
Next() method on page 192.

DeleteWaitPeriod()

Determines or specifies the number of days to retain documents before deleting
them.

Syntax unsigned int DeleteWaitPeriod() const;

void DeleteWaitPeriod (const unsigned int& flag);

Parameters The DeleteWaitPeriod() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
number of days to retain documents before deleting them.

Discussion Use the first form of the method to determine the number of days to retain
documents before deleting them. Use the second form to specify the number of
days. The DeleteWaitPeriod() method does not modify the database.

days An unsigned integer that specifies the number of days.
182 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Description()

Determines or specifies the partnership’s description.

Syntax const char* Description() const;

void Description (const char* description);

Parameters The Description() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the description.

Discussion Use the first form of the method to determine the description. Use the second
form to specify the description. The Description() method does not modify
the database.

DocLastControlNumber()

Determines or specifies the last document control number generated.

Syntax const char* DocLastControlNumber() const;

void DocLastControlNumber (const char* controlNumber);

Parameters The DocLastControlNumber() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the control number.

Discussion Use the first form of the method to determine the control number. Use the
second form to specify the control number. The DocLastControlNumber()
method does not modify the database.

desc A pointer to a character string that contains the description.

controlNumber A pointer to a character string that contains the control num-
ber.
02 July 99 Chapter 12, Partnership-Related Classes 183

EcxPartnership Class Reference
DocLock()

Determines or specifies whether or not the document has been read at the
document level.

Syntax unsigned int DocLock() const;
void DocLock(const unsigned int&);

Returns The first form of the method returns an unsigned integer that specifies whether
or not the submission has been read at the document level.

Example See “Using the EcxPartnership Class” on page 169.

DocPriority()

Determines or specifies the document processing priority.

Syntax unsigned int DocPriority() const;

void DocPriority (const unsigned int& priority);

Parameters The DocPriority() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
priority.

Discussion Use the first form of the method to determine the priority. Use the second form
to specify the priority. The DocPriority() method does not modify the
database.

You can use any of the following values:

priority An unsigned integer that specifies the priority.

Constant Value

PRIORITY_UNKNOWN 0

PRIORITY_HIGH 1

PRIORITY_MEDIUM 2

PRIORITY_LOW 3
184 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
See also “Class Variables” on page 175.

DocType()

Determines or specifies the kind of EDI document.

Syntax const char* DocType() const;

void DocType (const char* type);

Parameters The DocType() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the document type.

Discussion Use the first form of the method to determine the type. Use the second form to
specify the type. The DocType() method does not modify the database.

Example “Adding Partnerships” on page 170. “Listing Partnerships” on page 171.

ElementSeparator()

Determines or specifies the data element terminator character.

Syntax const char* ElementSeparator() const;

void ElementSeparator (const char* separator);

Parameters The ElementSeparator() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the terminator character.

Discussion Use the first form of the method to determine the terminator character. Use the
second form to specify the terminator character. The ElementSeparator()
method does not modify the database.

type A pointer to a character string that contains the document type.

separator A pointer to a character string that contains the terminator
character.
02 July 99 Chapter 12, Partnership-Related Classes 185

EcxPartnership Class Reference
GenOptEnv ()

Determines or specifies the enveloping options.

Syntax unsigned int GenOptEnv() const;

void GenOptEnv(const unsigned int&);

Returns The first form of the method returns an unsigned integer that specifies the
enveloping options.

Discussion You can use any of the following values:

Example See “Using the EcxPartnership Class” on page 169.

Get()

Retrieves partnership view-related records from the database.

Syntax EcxPartnership& Get(EcxPartnerId& prntnrid);

Parameters The Get() method has the following parameters:

Returns A reference to this partnership object.

Discussion Administrators may retrieve records for any view. Non-administrators can only
retrieve records for views in which either the sender or receiver member name
matches the user’s login name. You call the partnership ID object’s
SetValues() method to specify the view whose records you wish to retrieve.

Constant Value

No UNA, No UNG 0

UNA only 1

UNG only 2

UNA and UNG 3

prntnrid A reference to an EcxPartnerId that specifies the partner-
ship.
186 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
If you wish use the Get() method to retrieve a specific partnership, you must
first construct an instance of EcxPartnerId() with the proper keys, such as
partner ID, standard ID, etc. An easier way to retrieve a partnership would be
to use the List() method. You may use the List() method to list the
partnership by sender name and receiver name. If the user is logged in as an
administrator, the user can list any partnership by setting the sender name and
receiver name. If the user is not logged in as an administrator, the user can only
list the partnership that the user belongs to, meaning the partnership with the
logged in user either as the sender or receiver.

See also The EcxPartnerId::SetValues() method on page 211. The List()
method on page page 190.

GroupGenerateDocAck()

Specifies whether to generate an acknowledgement for the submission at the
group level.

Syntax unsigned int GroupGenerateDocAck() const;
void GroupGenerateDocAck(const unsigned int&);

Returns The first form of the method returns an unsigned integer that indicates whether
or not to generate an acknowledgement for the submission at the group level.

Example See “Using the EcxPartnership Class” on page 169.

GroupLastControlNumber()

Determines or specifies the last group control number generated.

Syntax const char* GroupLastControlNumber() const;

void GroupLastControlNumber (const char* controlNumber);

Parameters The GroupLastControlNumber() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the control number.

controlNumber A pointer to a character string that contains the control num-
ber.
02 July 99 Chapter 12, Partnership-Related Classes 187

EcxPartnership Class Reference
Discussion Use the first form of the method to determine the control number. Use the
second form to specify the control number. The GroupLastControl-
Number() method does not modify the database.

GroupLock()

Determines or specifies whether the document has been read at the group
level.

Syntax unsigned int GroupLock() const;
void GroupLock (const unsigned int&)

Returns The first form of the method returns an unsigned integer that indicates whether
or not the document has been read at the group level.

Example See “Using the EcxPartnership Class” on page 169.

GroupType()

Determines or specifies the kind of EDI documents in the group.

Syntax const char* GroupType() const;

void GroupType (const char* type);

Parameters The GroupType() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the group type.

Discussion Use the first form of the method to determine the type. Use the second form to
specify the type. The GroupType() method does not modify the database.

Example “Adding Partnerships” on page 170. “Listing Partnerships” on page 171.

IntchngAckWaitPeriod()

Determines or specifies the number of minutes to wait before the acknowl-
edgment becomes overdue.

type A pointer to a character string that contains the group type.
188 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Syntax unsigned int IntchngAckWaitPeriod() const;

void IntchngAckWaitPeriod (const unsigned int& period);

Parameters The IntchngAckWaitPeriod() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
number of minutes to wait before an acknowledgment becomes overdue.

Discussion Use the first form of the method to determine the number of minutes to wait
before an acknowledgment becomes overdue. Use the second form to specify
the number of minutes. The IntchngAckWaitPeriod() method does not
modify the database.

IntchngLastControlNumber()

Determines or specifies the last interchange control number generated.

Syntax const char* IntchngLastControlNumber() const;

void IntchngLastControlNumber (const char* controlNumber);

Parameters The IntchngLastControlNumber() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the control number.

Discussion Use the first form of the method to determine the control number. Use the
second form to specify the control number. The IntchngLastControl-
Number() method does not modify the database.

IntchngGenerateAck()

Specifies whether to generate an acknowledgement at the interchange level.

Syntax unsigned int IntchngGenerateAck() const;
void IntchngGenerateAck (const unsigned int&)

period An unsigned integer that specifies the number of minutes to
wait.

controlNumber A pointer to a character string that contains the control num-
ber.
02 July 99 Chapter 12, Partnership-Related Classes 189

EcxPartnership Class Reference
Returns An unsigned integer that specifies whether to generate an acknowledgement at
the interchange level.

Example See “Using the EcxPartnership Class” on page 169.

IntchngLock()

Determines or specifies whether the document has ben read at the interchange
level.

Syntax unsigned int IntchngLock() const;
void IntchngLock (const unsigned int&)

Returns An unsigned integer that specifies whether the document has been read at the
interchange level.

Example See “Using the EcxPartnership Class” on page 169.

List()

Retrieves a list of partnership view-related records from the database.

Syntax EcxPartnership& List(const char* partner = NULL);

Parameters The List() method has the following parameters:

Returns A reference to this partnership object.

Discussion Administrators may retrieve records for any view. Non-administrators can only
retrieve records for views in which either the sender or receiver member name
matches the user’s login name. The views retrieved for non-administrators
depend on whether the sender or receiver member names are specified in the
partnership object:

• If neither the sender or receiver is specified, the List() method retrieves
all view-related records for views in which the user is either the sender or
receiver.

partner A pointer to a character string that contains the name of the
receiving member or NULL if not specified.
190 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
• If only the sender is specified, the List() method retrieves all view-
related records for views in which the user is the sender.

• If only the receiver is specified, the List() method retrieves all view-
related records for views in which the user is the receiver.

• If both the sender and receiver are specified, the List() method retrieves
all view-related records for views that match both the sender and receiver;
in which case, the user must be either the receiver or sender.

You can restrict the views, and thus the records that are retrieved, by specifying
a partnership in the partner parameter. In this case, the List() method uses
only views that match both the specified partner and user as either the sender
or receiver.

If you wish use the Get() method to retrieve a specific partnership, you must
first construct an instance of EcxPartnerId() with the proper keys, such as
partner ID, standard ID, etc. An easier way to retrieve a partnership would be
to use the List() method. You may use the List() method to list the
partnership by sender name and receiver name. If the user is logged in as an
administrator, the user can list any partnership by setting the sender name and
receiver name. If the user is not logged in as an administrator, the user can only
list the partnership that the user belongs to, meaning the partnership with the
logged in user either as the sender or receiver.

Warning If only the sender or receiver is specified for a non-administrator, the List()
method mutates the sender or receiver name to match the user name if the
respective name (sender or receiver) does not match the user name.

After calling the List() method, the partnership object’s fields contain values
from the records related to the first partnership view in the list.

Example “Listing Partnerships” on page 171.

See Also The Get() method on page page 186.

MapName()

Determines or specifies the map file name.

Syntax const char* MapName() const;

void MapName (const char* map);
02 July 99 Chapter 12, Partnership-Related Classes 191

EcxPartnership Class Reference
Parameters The MapName() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the map name.

Discussion Use the first form of the method to determine the map name. Use the second
form to specify the map name. The MapName() method does not modify the
database.

More()

Determines whether more records are left in the list.

Syntax long More(void);

Returns A long integer that contains the number of records not yet accessed from the
list.

Discussion After calling the List() method and before calling the Next() method, the
More() method returns the total number of records in the list. All records have
been accessed when the More() method returns 0.

Example “Listing Partnerships” on page 171.

See also The List() method on page 190. The Next() method on page 192.

Next()

Associates the object with the next record in the list.

Syntax EcxPartnership& Next(void);

Returns A reference to this partnership object.

Discussion The Next() method sets the fields in the object to match those in the next
record in the list. The Next() method decrements the number of records not
yet accessed, which is returned by the More() method.

Warning Do not call the Next() method if the More() method returns a value less
than 1; the results are unpredictable.

map A pointer to a character string that contains the map name.
192 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Example “Listing Partnerships” on page 171.

See also The More() method on page 191.

OutRelease()

Determines or specifies the interchange release the user wishes to appear in
bundled EDI documents.

Syntax const char* OutVersion() const;

void OutVersion (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the interchange release the user wishes to appear in bundled EDI documents.

Discussion Use the first form of the method to determine interchange release the user
wishes to appear in bundled EDI documents. Use the second form to specify
the interchange release the user wishes to appear in bundled EDI documents.

OutStandard()

Determines or specifies the interchange standard the user wishes to appear in
bundled EDI documents.

Syntax const char* OutVersion() const;

void OutVersion (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the interchange standard the user wishes to appear in bundled EDI documents.

Discussion Use the first form of the method to determine interchange standard the user
wishes to appear in bundled EDI documents. Use the second form to specify
the interchange standard the user wishes to appear in bundled EDI documents.

OutVersion()

Determines or specifies the interchange version the user wishes to appear in
bundled EDI documents.

Syntax const char* OutVersion() const;
02 July 99 Chapter 12, Partnership-Related Classes 193

EcxPartnership Class Reference
void OutVersion (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the interchange version the user wishes to appear in bundled EDI documents.

Discussion Use the first form of the method to determine interchange version the user
wishes to appear in bundled EDI documents. Use the second form to specify
the interchange version the user wishes to appear in bundled EDI documents.

PartnerId()

Determines or specifies the partnership ID.

Syntax EcxPartnerId& PartnerId();

void PartnerId (const EcxPartnerId& id);

Parameters The PartnerID() method has the following parameters:

Returns The first form of the method returns a reference to an EcxPartnerId object
that contains the ID.

Discussion Use the first form of the method to determine the partnership ID. Use the
second form to specify the partnership ID. The PartnerID() method does
not modify the database.

See also The EcxPartnerId class on page 209.

PreEnveloped()

Determines or specifies whether documents are preenveloped.

Syntax unsigned int PreEnveloped() const;

void PreEnveloped (const unsigned int& type);

Parameters The PreEnveloped() method has the following parameters:

id A reference to an EcxPartnerId that specifies the partner-
ship.

type An unsigned integer that specifies the envelope type.
194 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Returns The first form of the method returns an unsigned integer that contains the
envelope type.

Discussion Use the first form of the method to determine the envelope type. Use the
second form to specify the envelope type. The PreEnveloped() method
does not modify the database.

You can use any of the following values:

See also “Class Variables” on page 175.

PrimaryXportParam()

Determines or specifies the primary transport protocol parameter.

Syntax const char* PrimaryXportParam() const;

void PrimaryXportParam (const char* param);

Parameters The PrimaryXportParam() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the protocol parameter.

Discussion Use the first form of the method to determine the protocol parameter. Use the
second form to specify the protocol parameter. The PrimaryXportParam()
method does not modify the database.

Constant Value

ENVELOPE_UNKNOWN 0

ENVELOPE_REGULAR 1

ENVELOPE_NONE 2

ENVELOPE_EDI 3

param A pointer to a character string that contains the protocol
parameter.
02 July 99 Chapter 12, Partnership-Related Classes 195

EcxPartnership Class Reference
PrimaryXportType()

Determines or specifies the primary transport protocol.

Syntax const char* PrimaryXportType() const;

void PrimaryXportType (const char* protocol);

Parameters The PrimaryXportType() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the protocol.

Discussion Use the first form of the method to determine the protocol. Use the second
form to specify the protocol. The PrimaryXportType() method does not
modify the database.

RcvrAppCode()

Determines or specifies the application receiver code.

Syntax const char* RcvrAppCode() const;

void RcvrAppCode (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the application receiver code.

Discussion Use the first form of the method to determine the application receiver code.
Use the second form to specify the application receiver code.

RcvrAppQual()

Determines or specifies the receiving member main trading address.

Syntax const char* RcvrAppQual() const;

void RcvrAppQual (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the receiving member main trading address.

protocol A pointer to a character string that contains the protocol.
196 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Discussion Use the first form of the method to determine the receiving member main
trading address. Use the second form to specify the receiving member main
trading address.

ReceiverCertificateType()

Determines or specifies the receiver’s certificate type

Syntax unsigned int ReceiverCertificateType() const;

void ReceiverCertificateType (const unsigned int& type);

Parameters The ReceiverCertificateType() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
certificate type.

Discussion Use the first form of the method to determine the certificate type. Use the
second form to specify the certificate type. The ReceiverCertifi-
cateType() method does not modify the database.

You can use any of the following values:

See also “Class Variables” on page 175.

ReceiverName()

Determines or specifies the receiver’s member name.

type An unsigned integer that specifies the certificate type.

Constant Value

CERTTYPE_UNKNOWN 0

CERTTYPE_SELF 1

CERTTYPE_VERISIGN1 2

CERTTYPE_VERISIGN2 3

CERTTYPE_VERISIGN3 4
02 July 99 Chapter 12, Partnership-Related Classes 197

EcxPartnership Class Reference
Syntax const char* ReceiverName() const;

void ReceiverName (const char* name);

Parameters The ReceiverName() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the member name.

Discussion Use the first form of the method to determine the member name. Use the
second form to specify the member name. The ReceiverName() method
does not modify the database.

Example “Adding Partnerships” on page 170. “Listing Partnerships” on page 171.

ReceiverQual()

Determines or specifies the receiver’s trading address qualifier.

Syntax const char* ReceiverQual() const;

void ReceiverQual (const char* qualifier);

Parameters The ReceiverQual() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the qualifier.

Discussion Use the first form of the method to determine the qualifier. Use the second
form to specify the qualifier. The ReceiverQual() method does not modify
the database.

Example “Adding Partnerships” on page 170.

ReceiverQualId()

Determines or specifies the receiver’s trading address

Syntax const char* ReceiverQualId() const;

name A pointer to a character string that contains the member name.

qualifier A pointer to a character string that contains the qualifier.
198 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
void ReceiverQualId (const char* id);

Parameters The ReceiverQualId() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the trading address.

Discussion Use the first form of the method to determine the trading address. Use the
second form to specify the trading address. The ReceiverQualId() method
does not modify the database.

Example “Adding Partnerships” on page 170.

ReleaseCharacter()

Determines or specifies the release character.

Syntax const char* ReleaseCharacter() const;

void ReleaseCharacter (const char* relChar);

Parameters The ReleaseCharacter() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the release character.

Discussion Use the first form of the method to determine the release character. Use the
second form to specify the release character. The ReleaseCharacter()
method does not modify the database.

SecondaryXportParam()

Determines or specifies the secondary transport protocol parameter.

Syntax const char* SecondaryXportParam() const;

void SecondaryXportParam (const char* param);

id A pointer to a character string that contains the trading
address.

relChar A pointer to a character string that contains the release charac-
ter.
02 July 99 Chapter 12, Partnership-Related Classes 199

EcxPartnership Class Reference
Parameters The SecondaryXportParam() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the protocol parameter.

Discussion Use the first form of the method to determine the protocol parameter. Use the
second form to specify the protocol parameter. The SecondaryXport-
Param() method does not modify the database.

SecondaryXportType()

Determines or specifies the secondary transport protocol.

Syntax const char* SecondaryXportParam() const;

void SecondaryXportType (const char* protocol);

Parameters The SecondaryXportType() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the protocol.

Discussion Use the first form of the method to determine the protocol. Use the second
form to specify the protocol. The SecondaryXportType() method does not
modify the database.

Security()

Determines or specifies the kind of security.

Syntax unsigned int Security() const;

void Security (const unsigned int& security);

Parameters The Security() method has the following parameters:

param A pointer to a character string that contains the protocol
parameter.

protocol A pointer to a character string that contains the protocol.

security An unsigned integer that specifies the security.
200 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Returns The first form of the method returns an unsigned integer that contains the
certificate type.

Discussion Use the first form of the method to determine the security. Use the second form
to specify the security. The Security() method does not modify the
database.

You can use any of the following values:

See also “Class Variables” on page 175.

SegmentTerminator()

Determines or specifies the segment terminator character.

Syntax const char* SegmentTerminator() const;

void SegmentTerminator (const char* terminator);

Parameters The SegmentTerminator() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the terminator character.

Discussion Use the first form of the method to determine the terminator character. Use the
second form to specify the terminator character. The SegmentTerminator()
method does not modify the database.

Constant Value

SECURITY_PLAIN 0

CERTTYPE_SELF 1

SECURITY_ENCRYPTED 2

SECURITY_SIGNEDANDENCRYPTED 3

terminator A pointer to a character string that contains the terminator
character.
02 July 99 Chapter 12, Partnership-Related Classes 201

EcxPartnership Class Reference
SndrAppCode()

Determines or specifies the application sender code.

Syntax const char* SndrAppCode() const;

void SndrAppCode (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the application sender code.

Discussion Use the first form of the method to determine the application sender code. Use
the second form to specify the application sender code.

SndrAppQual()

Determines or specifies the sending member main trading address.

Syntax const char* SndrAppQual() const;

void SndrAppQual (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the sending member main trading address.

Discussion Use the first form of the method to determine the sending member main trading
address. Use the second form to specify the sending member main trading
address.

SenderCertificateType()

Determines or specifies the sender’s certificate type.

Syntax unsigned int SenderCertificateType() const;

void SenderCertificateType (const unsigned int& type);

Parameters The SenderCertificateType() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
certificate type.

type An unsigned integer that specifies the certificate type.
202 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Discussion Use the first form of the method to determine the certificate type. Use the
second form to specify the certificate type. The SenderCertificateType()
method does not modify the database.

You can use any of the following values:

See also “Class Variables” on page 175.

SenderName()

Determines or specifies the sender’s member name.

Syntax const char* SenderName() const;

void SenderName (const char* name);

Parameters The SenderName() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the member name.

Discussion Use the first form of the method to determine the member name. Use the
second form to specify the member name. The SenderName() method does
not modify the database.

Example “Adding Partnerships” on page 170. “Listing Partnerships” on page 171.

Constant Value

CERTTYPE_UNKNOWN 0

CERTTYPE_SELF 1

CERTTYPE_VERISIGN1 2

CERTTYPE_VERISIGN2 3

CERTTYPE_VERISIGN3 4

name A pointer to a character string that contains the member name.
02 July 99 Chapter 12, Partnership-Related Classes 203

EcxPartnership Class Reference
SenderQual()

Determines or specifies the sender’s trading address qualifier.

Syntax const char* SenderQual() const;

void SenderQual (const char* qualifier);

Parameters The SenderQual() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the qualifier.

Discussion Use the first form of the method to determine the qualifier. Use the second
form to specify the qualifier. The SenderQual() method does not modify the
database.

Example “Adding Partnerships” on page 170.

SenderQualId()

Determines or specifies the sender’s trading address.

Syntax const char* SenderQualId() const;

void SenderQualId (const char* id);

Parameters The SenderQualId() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the trading address.

Discussion Use the first form of the method to determine the trading address. Use the
second form to specify the trading address. The SenderQualId() method
does not modify the database.

Example “Adding Partnerships” on page 170.

qualifier A pointer to a character string that contains the qualifier.

id A pointer to a character string that contains the trading
address.
204 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
SendType()

Determines or specifies when the document is to be sent.

Syntax unsigned int SendType() const;

void SendType (const unsigned int& type);

Parameters The SendType() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the send
type.

Discussion Use the first form of the method to determine the send type. Use the second
form to specify the send type. The SendType() method does not modify the
database.

You can use any of the following values:

See also “Class Variables” on page 175.

SetLogin()

Allows the object to access the database.

Syntax EcxPartnership& SetLogin(EcxLogin& login);

Parameters The SetLogin() method has the following parameters:

type An unsigned integer that specifies the send type.

Constant Value

SENDTYPE_UNKNOWN 0

SENDTYPE_IMMEDIATE 1

SENDTYPE_ONETIME 2

SENDTYPE_PERIODIC 3

login A reference to a valid EcxLogin object
02 July 99 Chapter 12, Partnership-Related Classes 205

EcxPartnership Class Reference
Returns A reference to this partnership object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the SetLogin() method before accessing this object.

Example See “Creating Partnership Objects” on page 170.

See also The EcxPartnership constructor on page 177. The EcxLogin class on
page 127.

StandardName()

Determines or specifies the name of the EDI standard.

Syntax const char* StandardName() const;

void StandardName (const char* name);

Parameters The StandardName() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the standard name.

Discussion Use the first form of the method to determine the standard name. Use the
second form to specify the standard name. The StandardName() method
does not modify the database.

Example See “Adding Partnerships” on page 170. See “Listing Partnerships” on page 171.

StandardRelease()

Determines or specifies the standard’s release number.

Syntax const char* StandardRelease() const;

void StandardRelease (const char* release);

Parameters The StandardRelease() method has the following parameters:

name A pointer to a character string that contains the standard name.

release A pointer to a character string that contains the release num-
ber.
206 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnership Class Reference
Returns The first form of the method returns a pointer to a character string that contains
the release number.

Discussion Use the first form of the method to determine the release number. Use the
second form to specify the release number. The StandardRelease()
method does not modify the database.

Example See “Adding Partnerships” on page 170.

StandardVersion()

Determines or specifies the standard’s version number.

Syntax const char* StandardVersion() const;

void StandardVersion (const char* version);

Parameters The StandardVersion() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the version number.

Discussion Use the first form of the method to determine the version number. Use the
second form to specify the version number. The StandardRelease()
method does not modify the database.

Example See “Adding Partnerships” on page 170. See “Listing Partnerships” on page 171.

SubElementSeparator()

Determines or specifies the data subelement terminator character.

Syntax const char* SubElementSeparator() const;

void SubElementSeparator (const char* separator);

Parameters The SubElementSeparator() method has the following parameters:

version A pointer to a character string that contains the version num-
ber.

separator A pointer to a character string that contains the terminator
character.
02 July 99 Chapter 12, Partnership-Related Classes 207

EcxPartnership Class Reference
Returns The first form of the method returns a pointer to a character string that contains
the terminator character.

Discussion Use the first form of the method to determine the terminator character. Use the
second form to specify the terminator character. The SubElementSepa-
rator() method does not modify the database.

TestProductionFlag()

Determines or specifies whether the partnership is used for testing or
production.

Syntax unsigned int TestProductionFlag() const;

void TestProductionFlag (const unsigned int& flag);

Parameters The TestProductionFlag() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the flag
value.

Discussion Use the first form of the method to determine the flag value. Use the second
form to specify the flag value. The TestProductionFlag() method does
not modify the database.

You can set or receive any of the following values:

See also “Class Variables” on page 175.

MapDirection()

Determines or specifies the document translation type.

flag An unsigned integer that specifies the flag value.

Description Value

Unknown 0

Production 1

Test 2
208 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 About the EcxPartnerID Class
Syntax unsigned int MapDirection() const;

void MapDirection (const unsigned int& type);

Parameters The MapDirection() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the trans-
lation type.

Discussion Use the first form of the method to determine the translation type. Use the
second form to specify the translation type. The MapDirection() method
does not modify the database.

You can use any of the following values:

See also “Class Variables” on page 175.

About the EcxPartnerID Class
The EcxPartnerID class represents a key from which partnership views can
be retrieved from the database. You must create an EcxPartnerID object
before you can call the partnership’s Get() and PartnerID() methods. A
partner ID key consists of the following values:

• partnership ID

type An unsigned integer that specifies the translation type.

Constant Value

XLATTYPE_UNKNOWN 0

XLATTYPE_INBOUND 1

XLATTYPE_OUTBOUND 2

XLATTYPE_EDI2EDI 3

XLATTYPE_APP2APP 4

XLATTYPE_NONE 5
02 July 99 Chapter 12, Partnership-Related Classes 209

EcxPartnerID Class Reference
• standard ID

• document type

In general, values for a partnership ID and a standard ID are the same for each
record in the view.

Methods Summary list:

EcxPartnerID Class Reference
Interface ecxpartnership.h

Superclasses None

Subclasses None

Friend Classes None

Syntax class DLL_ecxsdk EcxPartnerId { ... };

Constructor and Destructor

EcxPartnerId()

Creates an EcxPartnerId object.

Constructor and destructor

EcxPartnerID() Creates an EcxPartnerID object.

~EcxPartnerID() Destroys an EcxPartnerID object.

Setting key values

SetValues() Sets the values associated with a partnership view
key.

Determining key values

DocType() Determines the document type in the key.

PartnershipID() Determines the partnership ID in the key.

StandardID() Determines the standard ID in the key.
210 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxPartnerID Class Reference
Syntax EcxPartnerId(void);

~EcxPartnerId()

Destroys an EcxPartnerId object.

Syntax virtual ~EcxPartnerId(void);

Methods

This section describes the methods of the EcxPartnerId class.

DocType()

Determines the document type in the key.

Syntax const char* DocType(void) const;

Returns A pointer to a character string that contains the document type.

PartnershipId()

Determines the partnership ID in the key.

Syntax long PartnershipId(void) const;

Returns A long integer that contains the partnership ID.

SetValues()

Sets the values associated with a partnership view key.

Syntax void SetValues(long partnership_id,
long standard_id,
const char* doctype);
02 July 99 Chapter 12, Partnership-Related Classes 211

EcxPartnerID Class Reference
Parameters The SetValues() method has the following parameters:

Example EcxPartnerId ecxpartner;
...
ecxpartner.SetValues(m_partnership_id, m_partnership_id, m_doctype);
m_pPartnership->PartnerId(ecxpartner);

StandardId()

Determines the standard ID in the key.

Syntax long StandardId(void) const;

Returns A long integer that contains the standard ID.

partnership_id A long integer that specifies the partnership ID.

standard_id A long integer that specifies the standard ID.

doctype A pointer to a character string that specifies the document
type.
212 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

13
Document-Related Classes
his chapter describes the EcxDocument class, which represents
documents sent to the logged-in user via ECXpert. This chapter also

describes the EcxDocId class, which represents key values for EcxDocument
objects. This chapter contains the following sections:

• About the EcxDocument Class

• Using the EcxDocument Class

• EcxDocument Class Reference

• About the EcxDocID Class

• EcxDocID Class Reference

T

02 July 99 Chapter 13, Document-Related Classes 213

About the EcxDocument Class
About the EcxDocument Class
The EcxDocument class represents documents sent to the logged-in user via
ECXpert. You can retrieve these document records and access information that
identifies them, such as the filename that contains the document’s content.

Methods Summary list:

Constructor and destructor

EcxDocument() Creates an EcxDocument object.

~EcxDocument() Destroys an EcxDocument object.

Allowing database access

SetLogin() Allows the object to access the database.

Retrieving and listing document records

Get() Retrieves a document record from the database.

List() Retrieves a list of document records from the data-
base.

More() Determines whether more records are left in the list.

Next() Associates the object with the next record in the list.

Delete Deletes document records from the database.

Resetting an object’s state

Clear() Clears the state associated with an object, including its
list.

Accessing key fields

DocId() Determines the document ID.

Accessing document information

FileName() Determines the name of the file associated with the
document.

SecondaryTitle() Determines the secondary title.

SecondaryValue() Determines the secondary value.

SenderName() Determines or specifies the sender’s member name.

State() Determines the document’s state.

Title() Determines the document’s title.

Value() Determines the document’s value.

XportParam() Determines the transport parameter.

XportType() Determines the transport protocol.
214 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxDocument Class
Using the EcxDocument Class
The following example shows how to create an EcxDocument object and use
it to list the tracking records for incoming documents in the database. Records
received by the “ECXSDK” transport type are listed first, followed by those from
the specified sender by the “ECXSDK” transport type.

#include <stdio.h>
#include <fstream.h>

#include "ecxsdk.h"

int main(int argc, char * argv[]) {
 int retval = -1;

 EcxInit ecxinit;

Filename() Determines the name of the file associated with the
document.

CreationDate() Determines the date the document was created.

ModifyDate() Determines the most recent document modification
date.

DocType() Determines the document type.

Standard() Determines the document’s EDI standard.

Version() Determines the document’s EDI version.

Release() Determines the document’s EDI standard release
number.

CardCount() Determines the number of cards associated with the
document.

DataState() Determines the state the document data is in.

Read() Determines whether the document has been read.

Accessing card-level information

CardIOType() Determines the card input/output type.

CardFlags() Accesses information about what card flags have been
set.

TrackState() Determines the document’s tracking state.

TranslatedFileName() Accesses the name of the translated file.

SetReadyForPurge() Sets the document to “ready to be purged” state.
02 July 99 Chapter 13, Document-Related Classes 215

Using the EcxDocument Class
 EcxLogin * pLogin;
 EcxDocument * pDocument;
 EcxDocId id;

 if(argc != 3) {
 usage(argv);
 return(retval);
 }

 if((pLogin = new EcxLogin())->Errnum()) {
 cout << "EcxLogin Object Error:" << endl;
 cout << "\tErrnum: " << pLogin->Errnum() << endl;
 cout << "\tErrmsg: " << pLogin->Errmsg() << endl;
 cout << endl;
 return(pLogin->Errnum());
 }

 if((pLogin->Login(argv[1], argv[2])).Errnum()) {
 cout << "EcxLogin.Login() Failed:" << endl;
 cout << "\tErrnum: " << pLogin->Errnum() << endl;
 cout << "\tErrmsg: " << pLogin->Errmsg() << endl;
 cout << endl;
 return(pLogin->Errnum());
 }

 cout << "Successful login for user: " << argv[1] << endl;

 if((pDocument = new EcxDocument())->Errnum()) {
 cout << "EcxDocument Object Error:" << endl;
 cout << "\tErrnum: " << pDocument->Errnum() << endl;
 cout << "\tErrmsg: " << pDocument->Errmsg() << endl;
 cout << endl;
 return(pDocument->Errnum());
 }

 if((pDocument->SetLogin(*pLogin)).Errnum()) {
 cout << "EcxDocument.SetLogin() Failed:" << endl;
 cout << "\tErrnum: " << pDocument->Errnum() << endl;
 cout << "\tErrmsg: " << pDocument->Errmsg() << endl;
 cout << endl;
 return(pDocument->Errnum());
 }

 cout << "Created EcxDocument object!" << endl;

 pDocument->XportType("ECXSDK");

 if((pDocument->List()).Errnum()) {
 cout << "EcxDocument.List() Failed:" << endl;
 cout << "\tErrnum: " << pDocument->Errnum() << endl;
216 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxDocument Class
 cout << "\tErrmsg: " << pDocument->Errmsg() << endl;
 return(pDocument->Errnum());
 }

 cout << "*** " << pDocument->More() << " records found. ***" << endl;

 while(pDocument->More()) {
 cout << "---" << endl;
 cout << "SenderName: " << pDocument->SenderName() << endl;
 cout << "State: " << pDocument->State() << endl;
 cout << "Title: " << pDocument->Title() << endl;
 cout << "Value: " << pDocument->Value() << endl;
 cout << "SecondaryTitle: " << pDocument->SecondaryTitle() << endl;
 cout << "SecondaryValue: " << pDocument->SecondaryValue() << endl;
 cout << "FileName(1): " << pDocument->FileName(1) << endl;
 cout << "FileName(2): " << pDocument->FileName(2) << endl;
 cout << "FileName(3): " << pDocument->FileName(3) << endl;
 cout << endl;
 id = pDocument->DocId();
 pDocument->Next();
 }

 pDocument->Clear();
 pDocument->SenderName(argv[1]);
 pDocument->XportType("ECXSDK");

 if((pDocument->List()).Errnum()) {
 cout << "EcxDocument.List(" << argv[1] << ") Failed:" << endl;
 cout << "\tErrnum: " << pDocument->Errnum() << endl;
 cout << "\tErrmsg: " << pDocument->Errmsg() << endl;
 return(pDocument->Errnum());
 }

 cout << "*** " << pDocument->More() << " records found. ***" << endl;

 while(pDocument->More()) {
 cout << "---" << endl;
 cout << "SenderName: " << pDocument->SenderName() << endl;
 cout << "State: " << pDocument->State() << endl;
 cout << "Title: " << pDocument->Title() << endl;
 cout << "Value: " << pDocument->Value() << endl;
 cout << "SecondaryTitle: " << pDocument->SecondaryTitle() << endl;
 cout << "SecondaryValue: " << pDocument->SecondaryValue() << endl;
 cout << "FileName(1): " << pDocument->FileName(1) << endl;
 cout << "FileName(2): " << pDocument->FileName(2) << endl;
 cout << "FileName(3): " << pDocument->FileName(3) << endl;
 cout << endl;
 id = pDocument->DocId();
 pDocument->Next();
 }
02 July 99 Chapter 13, Document-Related Classes 217

EcxDocument Class Reference
 cout << "*** EcxDocument test complete ***" << endl;

 retval = 0;
 return(retval);
}

EcxDocument Class Reference
Interface ecxdocument.h

Superclasses EcxBase

Subclasses None

Friend Classes None

Syntax class EcxDocument : public EcxBase { ... };

Constants and Data Types

The following definitions, which are defined at file scope, allow you to specify
the kind of list you want to create:

Syntax #define ECXDOCUMENT_GET_READ 1

#define ECXDOCUMENT_GET_UNREAD 2

Constructor and Destructor

EcxDocument()

Creates an EcxDocument object.

ECXDOCUMENT_GET_READ Include documents that have been accessed.

ECXDOCUMENT_GET_UNREAD Include documents that have not been accessed.
218 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxDocument Class Reference
Syntax EcxDocument(void);

EcxDocument(EcxLogin& login);

Parameters The constructor has the following parameters:

Discussion The first form of the constructor allows you to create a stack-based object. The
second form of the constructor requires that you create an EcxLogin object
before you create this object.

Example See “Using the EcxDocument Class” on page 215.

See also The SetLogin() method on page 227. The EcxLogin class on page 127.

~EcxDocument()

Destroys an EcxDocument object.

Syntax virtual ~EcxDocument(void);

Discussion The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Clear() method. The destructor
does not destroy the associated EcxLogin object.

See also The Clear() method on page 220.

Methods

This section describes the methods of the EcxDocument class.

CardCount()

Determines the number of cards associated with the document.

Syntax const int* CardCount(void) const;

Returns An integer that contains the number of cards associated with the document.

Example See “Using the EcxDocument Class” on page 215.

login The login object to associate with this member object.
02 July 99 Chapter 13, Document-Related Classes 219

EcxDocument Class Reference
CardFlags()

Accesses information about what card flags have been set.

Syntax short CardFlags(int cardnum)

Parameters The CardFlags() method has the following parameters:

Returns A short integer that indicates what card flags have been set.

Example See “Using the EcxDocument Class” on page 215.

CardIOType()

Determines the card input/output type.

Syntax short CardIOType(int cardnum)

Parameters The CardIOType() method has the following parameters:

Returns A short integer that indicates the card input/output type.

Example See “Using the EcxDocument Class” on page 215.

Clear()

Clears the state associated with an object, including its list.

Syntax void Clear(void);

Discussion All fields in the object are reset to 0 or NULL. A list contains no records.

Example See “Using the EcxDocument Class” on page 215.

cardnum An integer that contains the card number.

cardnum An integer that contains the card number.
220 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxDocument Class Reference
CreationDate()

Determines the date the document was created.

Syntax const long CreationDate(void) const;

Returns A long integer that indicates the date the document was created.

Example See “Using the EcxDocument Class” on page 215.

DataState()

Determines the state the document data is in.

Syntax short DataState(void) const;

Returns A short integer that indicates what state the document data is in.

Discussion You can receive any of the following values:

Example See “Using the EcxDocument Class” on page 215.

Description Value

DSunknown 0

DSready for purge 1

DSpurged 2

DSready for archive 3

DSarchived 4

DSready for restore 5

DSrestored 6
02 July 99 Chapter 13, Document-Related Classes 221

EcxDocument Class Reference
Delete()

Deletes document records from the database.

Syntax EcxDocument& Delete(void);

Returns A reference to this document object.

Discussion You must be an administrator and be logged in before calling this method.

DocId()

Determines the document ID.

Syntax EcxDocId& DocId(void);

Returns A reference to an EcxDocId object that contains the document ID.

Example See “Using the EcxDocument Class” on page 215.

See also The EcxDocId class on page 231.

DocType()

Determines the document type.

Syntax const char* DocType(void) const;

Returns A pointer to a character string that contains the document type.

Example See “Using the EcxDocument Class” on page 215.

FileName()

Determines the name of the file associated with the document.

Syntax const char* FileName(int cardnum = 1);

Parameters The FileName() method has the following parameters:

cardnum An integer that contains the card number.
222 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxDocument Class Reference
Returns A pointer to a character string that contains the full path name of the file.

Example See “Using the EcxDocument Class” on page 215.

Discussion If you do not specify a card number, the file name associated with the first card
is returned. Typically, the first card is an input card.

Get()

Retrieves a document record from the database.

Syntax EcxDocument& Get(EcxDocId& docid, const int mark_read = TRUE);

Parameters The Get() method has the following parameters:

Returns A reference to this document object.

Discussion You call the document ID object’s SetValues() method to specify the
document you wish to retrieve. The logged-in user’s name must match the
receiver’s name for the retrieved document and the values for the document ID,
tracking ID, group ID, and interchange ID in the docid parameter must match
the corresponding values for the retrieved document. You can specify that the
document has not been read by setting the mark_read parameter to FALSE
before calling the Get() method; otherwise, the Get() method marks the
document as having been read.

See also The EcxDocId::SetValues() method on page 234.

List()

Retrieves a list of document records from the database..

Syntax EcxDocument& List(const int flags = ECXDOCUMENT_GET_UNREAD);

Parameters The List() method has the following parameters:

docid A reference to the EcxDocId object that specifies the retrieval
criteria.

mark_read An integer value that specifies whether to mark the document
as having been read.

flags An integer that specifies which documents to retrieve.
02 July 99 Chapter 13, Document-Related Classes 223

EcxDocument Class Reference
Returns A reference to this document object.

Discussion The logged-in user’s name must match the receiver’s name for the retrieved
document. By default, only unread documents are retrieved. You can further
control the records that are retrieved by specifying a value in the flags
parameter or by calling the SenderName() method:

• Set the flags parameter to ECXDOCUMENT_GET_READ to specify retrieval
of only documents that have been read.

• Set the flags parameter to both ECXDOCUMENT_GET_READ and
ECXDOCUMENT_GET_UNREAD (ECXDOCUMENT_GET_READ |
ECXDOCUMENT_GET_UNREAD) to specify retrieval of all document
records.

• Call the SenderName() method first to restrict the list to include only
documents with the specified sender.

After calling the List() method, the document object’s fields contain values
from the record related to the first document in the list.

If you are trying to use this method to retrieve tracking IDs to enable you to
retrieve a particular value, but no value is being returned, simply skip to the
next tracking ID. For example, if you are using this method to get tracking IDs
to retrieve the translated file name from the database, not every tracking ID has
a corresponding translated file, because some tracking IDs are generated by
bundle.

Example See “Using the EcxDocument Class” on page 215.

See also The SenderName() method on page 227. The XportType() method on
page 231. “Constants and Data Types” on page 218.

ModifyDate()

Determines the most recent document modification date.

Syntax const long ModifyDate(void) const;

Returns A long integer that indicates the most recent document modification date.

Example See “Using the EcxDocument Class” on page 215.
224 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxDocument Class Reference
More()

Determines whether more records are left in the list.

Syntax long More(void);

Returns A long integer that contains the number of records not yet accessed from the
list.

Discussion After calling the List() method and before calling the Next() method, the
More() method returns the total number of records in the list. All records have
been accessed when the More() method returns 0.

Example See “Using the EcxDocument Class” on page 215.

See also The List() method on page 223. The Next() method on page 225.

Next()

Associates the object with the next record in the list.

Syntax EcxDocument& Next(void);

Returns A reference to this document object.

Discussion The Next() method sets the fields in the object to match those in the next
record in the list. The Next() method decrements the number of records not
yet accessed, which is returned by the More() method.

Warning Do not call the Next() method if the More() method returns a value less
than 1; the results are unpredictable.

Example See “Using the EcxDocument Class” on page 215.

See also The More() method on page 225.

Read()

Determines whether the document has been read.

Syntax short Lock(void)const;
02 July 99 Chapter 13, Document-Related Classes 225

EcxDocument Class Reference
Returns A short integer that indicates whether the document has been read.

Discussion This method will set a document’s state to read (pass in 1 or true) or unread
(pass in 0 or false).

Example See “Using the EcxDocument Class” on page 215.

Release()

Determines the document’s EDI standard release number.

Syntax const char* Release(void) const;

Returns A pointer to a character string that contains the document’s EDI standard
release number.

Example See “Using the EcxDocument Class” on page 215.

SecondaryTitle()

Determines the secondary title.

Syntax const char* SecondaryTitle(void) const;

Returns A pointer to a character string that contains the title.

Example See “Using the EcxDocument Class” on page 215.

SecondaryValue()

Determines the secondary value.

Syntax const char* SecondaryValue(void) const;

Returns A pointer to a character string that contains the value.

Example See “Using the EcxDocument Class” on page 215.
226 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxDocument Class Reference
SenderName()

Determines or specifies the sender’s member name.

Syntax const char* SenderName(void) const;

void SenderName(const char * name);

Parameters The SenderName() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the name.

Discussion Use the first form of the method to determine the sender’s member name. Use
the second form to specify the name before calling the List() method. The
SenderName() method does not modify the database.

Example See “Using the EcxDocument Class” on page 215.

See also The List() method on page 223.

SetLogin()

Allows the object to access the database.

Syntax EcxDocument& SetLogin(EcxLogin& login);

Parameters The SetLogin() method has the following parameters:

Returns A reference to this document object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the SetLogin() method before accessing this object.

Example See “Using the EcxDocument Class” on page 215.

See also The EcxDocument constructor on page 218. The EcxLogin class on
page 127.

name A pointer to a character string that specifies the name.

login A reference to a valid EcxLogin object
02 July 99 Chapter 13, Document-Related Classes 227

EcxDocument Class Reference
SetReadyForPurge()

Sets document to “ready to be purged” state.

Syntax EcxDocument& SetReadyForPurge(EcxDocId& docid)

Parameters The SetReadyForPurge() method has the following parameters:

Returns A reference to this document object.

Example See “Using the EcxDocument Class” on page 215.

Standard()

Determines the document’s EDI standard.

Syntax const char* Standard(void) const;

Returns A pointer to a character string that contains the document’s EDI standard.

Example See “Using the EcxDocument Class” on page 215.

State()

Determines the document’s state.

Syntax short State(void) const;

Returns A short integer that specifies the document’s state.

Discussion You can receive any of the following values:

docid A reference to the document’s ID number

Description Value

Unknown 0

Ready 1

In progress 2
228 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxDocument Class Reference
Example See “Using the EcxDocument Class” on page 215.

Title()

Determines the document’s title.

Syntax const char* Title(void) const;

Returns A pointer to a character string that contains the title.

TrackState()

Determines the document’s tracking state.

Syntax void TrackState(const short state);

Parameters The TrackState() method has the following parameters:

Returns A reference to this document object.

Discussion To retrieve a list of docs with a specific state, specify the state before you call
the List() method. You can receive any of the following states:

Done okay 3

Done bad 4

All done okay 5

Bundled 6

state A bitmap that specifies the document’s state

Description Value

Unknown 0
02 July 99 Chapter 13, Document-Related Classes 229

EcxDocument Class Reference
TranslatedFileName()

Accesses the name of the translated file.

Syntax const char* TranslatedFileName(void);

Returns A pointer to a character string that contains the name of the translated file.

Discussion If you are trying to use this method to retrieve tracking IDs to enable you to
retrieve a particular value, but no value is being returned, simply skip to the
next tracking ID. For example, if you are using this method to get tracking IDs
to retrieve the translated file name from the database, not every tracking ID has
a corresponding translated file, because some tracking IDs are generated by
bundle.

Value()

Determines the document’s value.

Syntax const char* Value(void) const;

Returns A pointer to a character string that contains the value.

Version()

Determines the document’s EDI standard version number.

Syntax const char* version(void) const;

Returns A pointer to a character string that contains the document’s EDI standard
version number.

Complete 1

In progress 2

Warning 4

Failed 8
230 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 About the EcxDocID Class
Example See “Using the EcxDocument Class” on page 215.

XportParam()

Determines the transport parameter.

Syntax const char* XportParam(void) const;

Returns A pointer to a character string that contains the parameter.

XportType()

Determines the transport protocol.

Syntax const char* XportType(void) const;

void XportType(const char * protocol);

Parameters The XportType() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the protocol.

Discussion Use the first form of the method to determine the protocol. Use the second
form to specify the protocol before calling the List() method. The
XportType() method does not modify the database.

Example See “Using the EcxDocument Class” on page 215.

See also The List() method on page 223.

About the EcxDocID Class
The EcxDocID class represents a key from which documents can be retrieved
from the database. You must create an EcxDocID object before you can call
the partnership’s Get() and DocID() methods. A document ID key consists
of the following values:

protocol A pointer to a character string that specifies the protocol.
02 July 99 Chapter 13, Document-Related Classes 231

EcxDocID Class Reference
• tracking ID

• interchange ID

• group ID

• document ID

Methods Summary list:

EcxDocID Class Reference
Interface ecxdocument.h

Superclasses None

Subclasses None

Friend Classes None

Syntax class EcxDocId { ... };

Constructor and destructor

EcxDocID() Creates an EcxDocID object.

~EcxDocID() Destroys an EcxDocID object.

Setting key values

SetValues() Sets the values associated with a document’s key.

Determining key values

DocumentID() Determines the document ID in the key.

TrackingID() Determines the tracking ID in the key.

InterchangeID() Determines the interchange ID in the key.

GroupID() Determines the group ID in the key.
232 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxDocID Class Reference
Constructor and Destructor

EcxDocID()

Creates an EcxDocID object.

Syntax EcxDocID(void);

~EcxDocID()

Destroys an EcxDocID object.

Syntax virtual ~EcxDocID(void);

Methods

This section describes the methods of the EcxDocID class.

DocumentId()

Determines the document ID in the key.

Syntax long DocumentId(void);

Returns A long integer that contains the document ID.

GroupId()

Determines the group ID in the key.

Syntax long GroupId(void);

Returns A long integer that contains the group ID.
02 July 99 Chapter 13, Document-Related Classes 233

EcxDocID Class Reference
InterchangeId()

Determines the interchange ID in the key.

Syntax long InterchangeId(void);

Returns A long integer that contains the interchange ID.

SetValues()

Sets the values associated with a document’s key.

Syntax void SetValues(long trackID,
long interchangeID,
long groupID,
long documentID);

Parameters The SetValues() method has the following parameters:

TrackingId()

Determines the tracking ID in the key.

Syntax long TrackingId(void);

Returns A long integer that contains the tracking ID.

trackID A long integer that specifies the tracking ID.

interchangeID A long integer that specifies the interchange ID.

groupID A long integer that specifies the group ID.

documentID A long integer that specifies the document ID.
234 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

14
The EcxTracking Class
his chapter describes the EcxTracking class, which represents
documents sent from the logged-in user via ECXpert. This chapter

contains the following sections:

• About the EcxTracking Class

• Using the EcxTracking Class

• EcxTracking Class Reference

T

02 July 99 Chapter 14, The EcxTracking Class 235

About the EcxTracking Class
About the EcxTracking Class
The EcxTracking class represents documents sent from the logged-in user
via ECXpert. You can retrieve the tracking status of a document using an
EcxTracking object.

Methods Summary list:

Constructor and destructor

EcxTracking() Creates an EcxTracking object.

~EcxTracking() Destroys an EcxTracking object.

Allowing database access

SetLogin() Allows the object to access the database.

Listing document records

List() Retrieves a list of document records from the data-
base.

More() Determines whether more records are left in the list.

Next() Associates the object with the next record in the list.

Get() Retrieves document ID records from the database.

Delete() Deletes a document record.

Resetting an object’s state

Clear() Clears the state associated with an object, including its
list.

Accessing document information

SecondaryTitle() Determines the secondary title.

SecondaryValue() Determines the secondary value.

ReceiverName() Determines receiver’s member name.

State() Determines the document’s state.

Title() Determines the document’s title.

Value() Determines the document’s value.

Progress() Determines the document’s progress.

FileName() Accesses the file name of the document.

Standard() Determines the document’s EDI standard.

Version() Determines the document’s EDI standard version
number.
236 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxTracking Class
Using the EcxTracking Class
The following example shows how to create an EcxTracking object and use
it to list the tracking-related records in the database:

#include <stdio.h>
#include <fstream.h>

#include "ecxsdk.h"
int main(int argc, char * argv[]) {
 int retval = -1;

 EcxInit ecxinit;
 EcxLogin * pLogin;
 EcxTracking * pTracking;

 if((pLogin = new EcxLogin())->Errnum()) {
 cout << "EcxLogin Object Error:" << endl;
 cout << "\tErrnum: " << pLogin->Errnum() << endl;
 cout << "\tErrmsg: " << pLogin->Errmsg() << endl;
 cout << endl;
 return(pLogin->Errnum());
 }

 if((pLogin->Login(argv[1], argv[2])).Errnum()) {
 cout << "EcxLogin.Login() Failed:" << endl;
 cout << "\tErrnum: " << pLogin->Errnum() << endl;
 cout << "\tErrmsg: " << pLogin->Errmsg() << endl;
 cout << endl;
 return(pLogin->Errnum());
 }

 cout << "Successful login for user: " << argv[1] << endl;

Release() Determines the document’s EDI standard release
number.

TranslatedFileName() Accesses the name of the translated file.

CreationDate() Accesses the date the document was created.

ModifyDate() Accesses the date the document was last modified.

DocType() Determines the document type.

DataState() Determines what state the data is in.

SetReadyForPurge() Specifies whether the document is ready to be
purged.
02 July 99 Chapter 14, The EcxTracking Class 237

Using the EcxTracking Class
 if((pTracking = new EcxTracking())->Errnum()) {
 cout << "EcxTracking Object Error:" << endl;
 cout << "\tErrnum: " << pTracking->Errnum() << endl;
 cout << "\tErrmsg: " << pTracking->Errmsg() << endl;
 cout << endl;
 return(pTracking->Errnum());
 }

 if((pTracking->SetLogin(*pLogin)).Errnum()) {
 cout << "EcxTracking.SetLogin() Failed:" << endl;
 cout << "\tErrnum: " << pTracking->Errnum() << endl;
 cout << "\tErrmsg: " << pTracking->Errmsg() << endl;
 cout << endl;
 return(pTracking->Errnum());
 }

 cout << "Created EcxTracking object!" << endl;

 if((pTracking->List()).Errnum()) {
 cout << "EcxTracking.List() Failed:" << endl;
 cout << "\tErrnum: " << pTracking->Errnum() << endl;
 cout << "\tErrmsg: " << pTracking->Errmsg() << endl;
 return(pTracking->Errnum());
 }

 cout << "*** " << pTracking->More() << " records found. ***" << endl;

 while(pTracking->More()) {
 cout << "---" << endl;
 cout << "ReceiverName: " << pTracking->ReceiverName() << endl;
 cout << "State: " << pTracking->State() << endl;
 cout << "Title: " << pTracking->Title() << endl;
 cout << "Value: " << pTracking->Value() << endl;
 cout << "SecondaryTitle: " << pTracking->SecondaryTitle() << endl;
 cout << "SecondaryValue: " << pTracking->SecondaryValue() << endl;
 cout << endl;
 pTracking->Next();
 }

 cout << "*** EcxTracking test complete ***" << endl;

 retval = 0;
 return(retval);
}

238 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxTracking Class Reference
EcxTracking Class Reference
Interface ecxtracking.h

Superclasses EcxBase

Subclasses None

Friend Classes None

Syntax class EcxTracking : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the state of the documents
you want to list:

Syntax static int COMPLETE;

static int INPROGRESS;

static int WARNING;

static int FAILED

static int UNKNOWN;

Constructor and Destructor

EcxTracking()

Creates an EcxTracking object.

COMPLETE Document processing is complete.

INPROGRESS Document is being processed.

WARNING Document was processed with a warning.

FAILED Document could not be processed due to errors.

UNKNOWN Document is unknown.
02 July 99 Chapter 14, The EcxTracking Class 239

EcxTracking Class Reference
Syntax EcxTracking(void);

EcxTracking(EcxLogin& login);

Parameters The constructor has the following parameters:

Discussion The first form of the constructor allows you to create a stack-based object. The
second form of the constructor requires that you create an EcxLogin object
before you create this object.

Example See “Using the EcxTracking Class” on page 237.

See also The SetLogin() method on page 247. The EcxLogin class on page 127.

~EcxTracking()

Destroys an EcxTracking object.

Syntax virtual ~EcxTracking(void);

Discussion The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Clear() method. The destructor
does not destroy the associated EcxLogin object.

See also The Clear() method on page 240.

Methods

This section describes the methods of the EcxTracking class.

Clear()

Clears the state associated with an object, including its list.

Syntax void Clear(void);

Discussion All fields in the object are reset to 0 or NULL. A list contains no records.

login The login object to associate with this tracking object.
240 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxTracking Class Reference
CreationDate()

Accesses the date the document was created.

Syntax const long CreationDate(void)

Returns A long integer that contains the date the document record was created.

Example See “Using the EcxTracking Class” on page 237.

Delete()

Deletes a document record.

Syntax EcxTracking& Delete

Returns A reference to this tracking object.

Example See “Using the EcxTracking Class” on page 237.

DataState()

Determines what state the document data is in.

Syntax short DataState(void) const;

Returns A short integer that indicates what state the record data is in.

Discussion You can receive any of the following values:

Description Value

DSunknown 0

DSready for purge 1

DSpurged 2
02 July 99 Chapter 14, The EcxTracking Class 241

EcxTracking Class Reference
Example See “Using the EcxTracking Class” on page 237.

DocType()

Determines the document type.

Syntax const char* DocType(void) const;

Returns A pointer to a character string that indicates the document type.

Example See “Using the EcxTracking Class” on page 237.

FileName()

Accesses the file name of the document.

Syntax const char* FileName(void) const;

Returns A pointer to a character string that contains the document’s file name.

Example See “Using the EcxTracking Class” on page 237.

Get()

Retrieves document ID records from the database.

Syntax EcxTracking& Get(EcxDocId& docid, const inst mark_read = TRUE);

Parameters The Get() method has the following parameters:

DSready for archive 3

DSarchived 4

DSready for restore 5

DSrestored 6

docid A reference to an EcxDocId that specifies the document.
242 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxTracking Class Reference
Returns A reference to this tracking object.

List()

Retrieves a list of document records from the database.

Syntax EcxTracking& List(CStr receiver = NULL,
const struct tm* fromdate = NULL,
const struct tm* todate = NULL,
const int state_flag = 0,
CStr sender = NULL);

Parameters The List() method has the following parameters:

Returns A reference to this tracking object.

Discussion An administrator can specify any sender’s member name in the sender
parameter. A non-administrator can specify only his or her user login name as
the sender’s member name. If an administrator specifies NULL for the sender
parameter, which is the default, the sender’s member name is not used to select
records; all records matching the other criteria are retrieved. If a non-adminis-
trator specifies NULL for the sender parameter, only document records whose
sender’s member name match the user’s login name and match the other
criteria are retrieved.

Values for the remaining criteria, if specified, are ANDed together:

• Specify a value for the receiver parameter to restrict retrieval to records
for a specific recipient. If you do not specify a value for the receiver
parameter, all recipients will be considered for retrieval.

• Specify a value for the fromdate parameter to restrict retrieval from the
specified starting date, inclusive. If you do not specify a value for the
fromdate parameter, all records will be considered.

receiver A CStr structure that specifies the receiver’s member name.

fromdate A pointer to a tm structure that specifies the starting date.

todate A pointer to a tm structure that specifies the ending date.

state_flag An integer that contains the state flags.

sender A CStr structure that specifies the sender’s member name.
02 July 99 Chapter 14, The EcxTracking Class 243

EcxTracking Class Reference
• Specify a value for the todate parameter to restrict retrieval to the
specified ending date, inclusive. If you do not specify a value for the
todate parameter, all records will be considered.

• Specify one or more flags for the state_flag parameter to restrict
retrieval to document records that match the specified state. If you do not
specify a value for the state_flag parameter, all records will be
considered. Valid flags are COMPLETE, INPROGRESS, WARNING, and
FAILED. The flags are ORed together before being ANDed with the other
criteria.

After calling the List() method, the document object’s fields contain values
from the record related to the first document that matches the criteria.

If you are trying to use this method to retrieve tracking IDs to enable you to
retrieve a particular value, but no value is being returned, simply skip to the
next tracking ID. For example, if you are using this method to get tracking IDs
to retrieve the translated file name from the database, not every tracking ID has
a corresponding translated file, because some tracking IDs are generated by
bundle.

Example See “Using the EcxTracking Class” on page 237.

See also “Class Variables” on page 239.

ModifyDate()

Accesses the date the document was last modified.

Syntax const long ModifyDate(void) const;

Returns A long integer that indicates the date the document was last modified

Example See “Using the EcxTracking Class” on page 237.

More()

Determines whether more records are left in the list.

Syntax long More(void);
244 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxTracking Class Reference
Returns A long integer that contains the number of records not yet accessed from the
list.

Discussion After calling the List() method and before calling the Next() method, the
More() method returns the total number of records in the list. All records have
been accessed when the More() method returns 0.

Example See “Using the EcxTracking Class” on page 237.

See also The List() method on page 243. The Next() method on page 245.

Next()

Associates the object with the next record in the list.

Syntax EcxTracking& Next(void);

Returns A reference to this tracking object.

Discussion The Next() method sets the fields in the object to match those in the next
record in the list. The Next() method decrements the number of records not
yet accessed, which is returned by the More() method.

Warning Do not call the Next() method if the More() method returns a value less
than 1; the results are unpredictable.

Example See “Using the EcxTracking Class” on page 237.

See also The More() method on page 244.

Progress()

Determines the document’s progress.

Syntax const int Progress(void) const;

Returns An integer that indicates the document’s progress.

Example See “Using the EcxTracking Class” on page 237.
02 July 99 Chapter 14, The EcxTracking Class 245

EcxTracking Class Reference
ReceiverName()

Determines the receiver’s member name.

Syntax const char* ReceiverName(void) const;

Returns A pointer to a character string that contains the name.

Example See “Using the EcxTracking Class” on page 237.

Release()

Determines the document’s EDI standard release number.

Syntax const char* Release(void) const;

Returns A pointer to a character string that indicates the document’s EDI standard
release number.

Example See “Using the EcxTracking Class” on page 237.

SecondaryTitle()

Determines the secondary title.

Syntax const char* SecondaryTitle(void) const;

Returns A pointer to a character string that contains the title.

Example See “Using the EcxTracking Class” on page 237.

SecondaryValue()

Determines the secondary value.

Syntax const char* SecondaryValue(void) const;

Returns A pointer to a character string that contains the value.

Example See “Using the EcxTracking Class” on page 237.
246 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxTracking Class Reference
SetLogin()

Allows the object to access the database.

Syntax EcxTracking& SetLogin(EcxLogin& login);

Parameters The SetLogin() method has the following parameters:

Returns A reference to this tracking object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the SetLogin() method before accessing this object.

Example See “Using the EcxTracking Class” on page 237.

See also The EcxTracking constructor on page 239. The EcxLogin class on
page 127.

SetReadyForPurge()

Specifies whether the document is ready to be purged.

Syntax EcxTracking& SetReadyForPurge(EcxDocId& docid)

Parameters The SetReadyForPurge() method has the following parameters:

Returns A reference to this tracking object.

Example See “Using the EcxTracking Class” on page 237.

Standard()

Determines the document’s EDI standard.

Syntax const char* Standard(void) const;

Returns A pointer to a character string that contains the document’s EDI standard.

login A reference to a valid EcxLogin object

docid A reference to the document’s ID number
02 July 99 Chapter 14, The EcxTracking Class 247

EcxTracking Class Reference
Example See “Using the EcxTracking Class” on page 237.

State()

Determines the document’s state.

Syntax short State(void) const;

Returns A short integer that specifies the document’s state.

Discussion You can receive any of the following values:

Example See “Using the EcxTracking Class” on page 237.

Title()

Determines the document’s title.

Syntax const char* Title(void) const;

Returns A pointer to a character string that contains the title.

Example See “Using the EcxTracking Class” on page 237.

Description Value

TSunknown - indicates NULL value 0

TSready - indicates service has yet to be invoked 1

TSinProgress - indicates service has been invoked 2

STSdoneOK - indicates service is done with no errors 3

TSdoneBad - indicates service is done with errors 4

TSalldoneOK - indicates last service on service list is done and
TRKState is TSdoneOK

5

TSbundled - identifies bundle generated trackings 6
248 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxTracking Class Reference
TranslatedFileName()

Accesses the name of the translated file.

Syntax const char* TranslatedFileName(void);

Returns A pointer to a character string that contains the name of the translated file.

Discussion If you are trying to use this method to retrieve tracking IDs to enable you to
retrieve a particular value, but no value is being returned, simply skip to the
next tracking ID. For example, if you are using this method to get tracking IDs
to retrieve the translated file name from the database, not every tracking ID has
a corresponding translated file, because some tracking IDs are generated by
bundle.

Value()

Determines the document’s value.

Syntax const char* Value(void) const;

Returns A pointer to a character string that contains the value.

Example See “Using the EcxTracking Class” on page 237.

Version()

Determines the document’s EDI standard version number.

Syntax const char* version(void) const;

Returns A pointer to a character string that contains the document’s EDI strandard
version number.

Example See “Using the EcxTracking Class” on page 237.
02 July 99 Chapter 14, The EcxTracking Class 249

EcxTracking Class Reference
250 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

15
The EcxLog Class
his chapter describes the EcxLog class, which represents entries in the
ECXpert log. This chapter contains the following sections:

• About the EcxLog Class

• Using the EcxLog Class

• EcxLog Class Reference

T

02 July 99 Chapter 15, The EcxLog Class 251

About the EcxLog Class
About the EcxLog Class
The EcxLog class represents entries in the ECXpert log. You can use an
EcxLog object to add an entry to the log.

Methods Summary list:

Constructor and destructor

EcxLog() Creates an EcxLog object.

~EcxLog() Destroys an EcxLog object.

Allowing database access

SetLogin() Allows the object to access the database.

Logging an event

LogEvent() Adds an entry to the log.

Resetting an object’s state

Clear() Clears the state associated with an object.

Accessing log information

Next Associates the object with the next record in the list.

More Determines whether more records are left in the list.

RetrieveLog Retrieves log information.

ELId Determines the ID number of the event in the event
log.

ELEventId Determines the ID number of the event in the event
log.

ELCategory Determines the category of the event in the event log.

ELSeverity Determines the severity of the event in the event log.

ELEventShortMsg Determines the short message associated with the
event in the event log.

ElTrkId Determines the tracking ID of the event in the event
log.
252 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxLog Class
Using the EcxLog Class
The following example shows how to write infromational messages, warning
messages, and fatal error messages to the ECXpert log:

int main(int argc, char * argv[]) {
...
if((pLog = new EcxLog())->Errnum()) {
 cout << "EcxLog Object Error:" << endl;
 cout << "\tErrnum: " << pLog->Errnum() << endl;
 cout << "\tErrmsg: " << pLog->Errmsg() << endl;
 cout << endl;
 return(pLog->Errnum());
 }

 if((pLog->SetLogin(*pLogin)).Errnum()) {
 cout << "EcxLog.SetLogin() Failed:" << endl;
 cout << "\tErrnum: " << pLog->Errnum() << endl;
 cout << "\tErrmsg: " << pLog->Errmsg() << endl;
 cout << endl;
 return(pLog->Errnum());
 }

 cout << "Created EcxLog object!" << endl;

 if((pLog->LogEvent(99,
 pLog->informational,
 "This is a informational TEST message")).Errnum()) {

 cout << "EcxLog.LogEvent() Failed:" << endl;
 cout << "\tErrnum: " << pLog->Errnum() << endl;
 cout << "\tErrmsg: " << pLog->Errmsg() << endl;
 return(pLog->Errnum());
 }

 cout << "WROTE: This is a informational TEST message" << endl;

 if((pLog->LogEvent(99,

ElIntgId Determines the interchange identifier.

ELGrpId Determines the group ID of the event in the event
log.

ElDocId Determines the ID number of the document in the
event log.

ElTDId Determines the document-level internal tracking ID
associated with the event.
02 July 99 Chapter 15, The EcxLog Class 253

EcxLog Class Reference
 pLog->warning,
 "This is a warning TEST message")).Errnum()) {

 cout << "EcxLog.LogEvent() Failed:" << endl;
 cout << "\tErrnum: " << pLog->Errnum() << endl;
 cout << "\tErrmsg: " << pLog->Errmsg() << endl;
 return(pLog->Errnum());
 }

 cout << "WROTE: This is a warning TEST message" << endl;

 if((pLog->LogEvent(99,
 pLog->error,
 "This is a error TEST message")).Errnum()) {

 cout << "EcxLog.LogEvent() Failed:" << endl;
 cout << "\tErrnum: " << pLog->Errnum() << endl;
 cout << "\tErrmsg: " << pLog->Errmsg() << endl;
 return(pLog->Errnum());
 }

 cout << "WROTE: This is an error TEST message" << endl;

 cout << "*** EcxLog test complete ***" << endl;

 retval = 0;
 return(retval);
}

EcxLog Class Reference
Interface ecxlog.h

Superclasses EcxBase

Subclasses None

Friend Classes None

Syntax class EcxLog : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the kind of message being
written to the database:
254 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxLog Class Reference
Syntax const int informational;

const int warning;

const int error;

Constructor and Destructor

EcxLog()

Creates an EcxLog object.

Syntax EcxLog(void);

EcxLog(EcxLogin& login);

Parameters The constructor has the following parameters:

Discussion The first form of the constructor allows you to create a stack-based object. The
second form of the constructor requires that you create an EcxLogin object
before you create this object.

Example See “Using the EcxLog Class” on page 253.

See also The SetLogin() method on page 261. The EcxLogin class on page 127.

~EcxLog()

Destroys an EcxLog object.

Syntax virtual ~EcxLog(void);

Discussion The destructor is called when you delete the object. The destructor does not
destroy the associated EcxLogin object.

informational Informational message.

warning Warning message.

error Fatal error message.

login The login object to associate with this tracking object.
02 July 99 Chapter 15, The EcxLog Class 255

EcxLog Class Reference
Methods

This section describes the methods of the EcxLog class.

Clear()

Clears the state associated with an object, including its list.

Syntax void Clear()

Discussion All fields in the object are reset to 0 or NULL. A list contains no records.

ELCategory()

Determines the functional area the event took place in.

Syntax const char* ELCategory() const;

Returns A pointer to a character string that contains the functional area the event took
place in (e.g. bundle, dispatcher, parse, etc.).

Example See “Using the EcxLog Class” on page 253.

ELDocId()

Determines the ID number of the document in event log.

Syntax const char* ELDocId

Returns A pointer to a character string that contains the document ID number.

Example See “Using the EcxLog Class” on page 253.

ELEventId()

Determines ID number associated with event in event log.

Syntax unsigned ELEventId() const;
256 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxLog Class Reference
Returns An unsigned integer that contains the ID number associated with event in event
log.

Example See “Using the EcxLog Class” on page 253.

ELEventShortMsg()

Determines the short message associated with the event in the event log.

Syntax const char* ELEventShortMsg() const;

Returns A pointer to a character string that contains the short message associated with
event in event log.

Example See “Using the EcxLog Class” on page 253.

ELGrpId()

Determines the group ID of the event in the event log.

Syntax unsigned ELGrpId() const;

Returns Unsigned integer that contains the group ID of event in event log.

Example See “Using the EcxLog Class” on page 253.

ELId()

Determines the ID number of the event in the event log.

Syntax unsigned ELId () const;

Returns Unsigned integer that contains the ID number of event in event log.

Example See “Using the EcxLog Class” on page 253.

ELIntgId()

Determines the interchange identifier.
02 July 99 Chapter 15, The EcxLog Class 257

EcxLog Class Reference
Syntax unsigned ELIntgId () const;

Returns Unsigned integer that contains the interchange identifier.

Example See “Using the EcxLog Class” on page 253.

ELSeverity()

Severity associated with the event in the event log.

Syntax unsigned ELSeverity () const;

Returns Unsigned integer that contains the severity associated with event in event log.

Discussion The level of severity can be informational, warning, or error.

Example See “Using the EcxLog Class” on page 253.

ELTDId()

Determines the document-level internal tracking ID associated with the event.

Syntax const char* ELTDId() const;

Returns A pointer to a character string that contains the document-level internal tracking
ID associated with an event.

Example See “Using the EcxLog Class” on page 253

ELTrkId()

Track ID of the event in the event log.

Syntax unsigned ELTrkId

Returns Unsigned integer that contains the tracking ID of event in event log.

Example See “Using the EcxLog Class” on page 253.
258 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxLog Class Reference
LogEvent()

Adds an entry to the event log.

Syntax EcxLog& LogEvent(long errnum, int severity, const char *
message);

Parameters The LogEvent() method has the following parameters:

Returns A reference to this log object.

Discussion You can specify one of the following constant for the kind of entry: informa-
tional, warning, or fatal. The user name of the logged-in user is also
written to the log.

Note The tracking ID written to the log is always 0.

Example See “Using the EcxLog Class” on page 253.

See also “Class Variables” on page 254.

More()

Determines whether more records are left in the list.

Syntax long More(void);

Returns A long integer that contains the number of records not yet accessed from the
list.

Discussion After calling the List() method and before calling the Next() method, the
More() method returns the total number of records in the list. All records have
been accessed when the More() method returns 0.

Example See “Using the EcxLog Class” on page 253.

errnum A long integer that specifies the error number you want to
associate with the entry.

severity An integer that specifies the kind of entry.

message A pointer to a character string that specifies the messge to
write to the log.
02 July 99 Chapter 15, The EcxLog Class 259

EcxLog Class Reference
See also The Next() method on page 260.

Next()

Associates the object with the next record in the list.

Syntax EcxDocument& Next(void);

Returns A reference to this document object.

Discussion The Next() method sets the fields in the object to match those in the next
record in the list. The Next() method decrements the number of records not
yet accessed, which is returned by the More() method.

Warning Do not call the Next() method if the More() method returns a value less
than 1; the results are unpredictable.

Example See “Using the EcxLog Class” on page 253.

See also The More() method on page 259.

RetrieveLog()

Retrieves log information.

Syntax EcxLog& RetrieveLog(const unsigned&trkId,
const char* sndrMBName,
const char* rcvrMBName,
const long fromdt,
const long todt,
const short stateBitmap);

Parameters The RetrieveLog() method has the following parameters:

sndrMBName A pointer to a character string that specifies the sender mem-
ber name.
260 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxLog Class Reference
Returns A pointer to this RetrieveLog object.

Example See “Using the EcxLog Class” on page 253

SetLogin()

Allows the object to access the database.

Syntax EcxTracking& SetLogin(EcxLogin& login);

Parameters The SetLogin() method has the following parameters:

Returns A reference to this tracking object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the SetLogin() method before accessing this object.

Example See “Using the EcxLog Class” on page 253.

See also The EcxLog constructor on page 255. The EcxLogin class on page 127.

rcvrMBName A pointer to a character string that specifies the receiver name.

fromdt A long integer that specifies the initial (“from”) date.

todt A long integer that specifies the final (“to”) date

stateBitmap Data state. Valid values:
0 = unknown
1 = readyForPurge
2 = purged
3 = readyForArchive
4 = archived
5 = readyForRestore
6 = restored

login A reference to a valid EcxLogin object
02 July 99 Chapter 15, The EcxLog Class 261

EcxLog Class Reference
262 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

16
The EcxFtpClient Class
his chapter describes the EcxFtpClient class. The EcxFtpClient is
an FTP Client API. The EcxFtpClient class defines methods you can

use to send and receive files via FTP.

. This chapter contains the following sections:

• About the EcxFtpClient Class

• Using the EcxFtpClient Class

• }EcxFtpClient Class Reference

T

02 July 99 Chapter 16, The EcxFtpClient Class 263

About the EcxFtpClient Class
About the EcxFtpClient Class
The EcxFtpClient() class is an FTP Client API which defines methods you
can use to send and receive files via FTP. The EcxFtpClient() class is based
on the RFC 959 FTP protocol.

Before you will be able to perform any FTP operations, you must first create
the EcxFtpClient() object and call the init() method. You can then run
FTP commands using the RunCommand() method.

Methods Summary list:

Using the EcxFtpClient Class
The following sections show how to:

• List files in the current directory

• Retrieve the names of files in the current directory listing

Constructor and destructor

EcxFtpClient(void) Creates an EcxFtpClient object.

virtual ~EcxFtpClient() Destroys an EcxFtpClient object.

Initializing the FTP Client API

Init Initializes the FTP client API

Accessing Entry Information

GetListCount() Retrieves the number of files in the current directory
listing

GetFirstListEntry() Retrieves the first file in the directory listing

GetNextListEntry() Retrieves the next file in the directory listing

Accessing FTP Replies

GetReplyCode() Retrieves the last reply code

GetReplyMsg() Retrieves the last reply message

IsReplyGood Indicates whether the last FTP command executed
was successful or not

Running Commands

RunCommand Runs a command
264 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxFtpClient Class
• Send and receive files

Listing Files in the Current Directory

The following example shows how to list all of the files in the current directory.
The RunCommand() method runs the ls and dir commands to generate a
directory listing.
int main(int argc, char * argv[])
{
 int retval = -1;

 //
 // List of ftp commands that we would be running using the Ecxpert
 // ftp client API. We basically login to the remote machine, run
 // ’ls’ and ’dir’ commands and dump the output on the console.
 //
 char * FtpCommands[] =
 {
 "open myhost.myserver.com",
 "user actraadm actraadm",
 "ls /tmp",
 "dir /tmp",
 "quit",
 ""
 };

 const char * pListEntry = 0;

 EcxInit EcxInitObj;

 EcxFtpClient * pFtpClientObj = 0;

 do
 {
 if (EcxInitObj.Errnum() != 0)
 {
 printf("Failed to initialize EcxInit object.\n");
 break;
 }

 if ((pFtpClientObj = new EcxFtpClient) == 0)
 {
 printf("No memory to create Ecxpert ftp client object.\n");
 break;
 }

 if (pFtpClientObj->Init("ecx.ini").Errnum())
 {
 printf("Failed to setup Ecxpert ftp client object.\n");
 break;
02 July 99 Chapter 16, The EcxFtpClient Class 265

Using the EcxFtpClient Class
 }

 for (int i = 0; strlen(FtpCommands[i]) != 0; ++i)
 {
 printf("\nExecuting Ftp command - %s\n", FtpCommands[i]);

 if (pFtpClientObj->RunCommand(FtpCommands[i]).Errnum())
 {
 printf("Error: %ld - Could not execute command.\n",
 pFtpClientObj->Errnum());
 break;
 }

 printf("Ftp reply code = %d\n", pFtpClientObj->GetReplyCode());
 printf("Ftp reply message = %s\n", pFtpClientObj->GetReplyMsg());

 if (pFtpClientObj->IsReplyGood() != TRUE)
 {
 printf("Command could not be executed successfully.\n");
 }
 else
 {
 //
 // Display the output of the ls/dir command
 //
 printf("Remote directory consists of %d entries.\n\n",
 pFtpClientObj->GetListCount());

 pListEntry = pFtpClientObj->GetFirstListEntry();

 while(pListEntry != 0)
 {
 printf("%s\n", pListEntry);
 pListEntry = pFtpClientObj->GetNextListEntry();
 }
 }
 }

 retval = pFtpClientObj->Errnum();
 }
 while(0);

 if (pFtpClientObj)
 delete pFtpClientObj;

 return(retval);
}

266 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxFtpClient Class
Retrieving File Names

The following example shows how to retrieve file names from the directory
listing. The GetFirstListEntry() and GetNextListEntry() methods
retrieve retrieve the first and all subsequent file names from the directory
listing.
int main(int argc, char * argv[])
{
 long retval = -1;

 char szTmpBuff[2048];

 const char * pListEntry = 0;

 EcxInit EcxInitObj;

 EcxFtpClient * pFtpClientObj = 0;

 do
 {
 if (EcxInitObj.Errnum() != 0)
 {
 printf("Failed to initialize EcxInit object.\n");
 break;
 }

 if ((pFtpClientObj = new EcxFtpClient) == 0)
 {
 printf("No memory to create Ecxpert ftp client object.\n");
 break;
 }

 if (pFtpClientObj->Init("ecx.ini").Errnum())
 {
 printf("Failed to setup Ecxpert ftp client object.\n");
 break;
 }

 do
 {
 printf("ecxftp> ");

 gets(szTmpBuff);

 if (pFtpClientObj->RunCommand(szTmpBuff).Errnum())
 {
 printf("Error: %ld - Could not execute command.\n",
 pFtpClientObj->Errnum());
 break;
 }

 printf("Ftp reply code = %d\n", pFtpClientObj->GetReplyCode());
02 July 99 Chapter 16, The EcxFtpClient Class 267

Using the EcxFtpClient Class
 printf("Ftp reply message = %s\n", pFtpClientObj->GetReplyMsg());

 if (pFtpClientObj->IsReplyGood() != TRUE)
 {
 printf("Command could not be executed successfully.\n");
 }
 else if (pFtpClientObj->GetListCount() > 0)
 {
 pListEntry = pFtpClientObj->GetFirstListEntry();

 while(pListEntry != 0)
 {
 printf("%s\n", pListEntry);
 pListEntry = pFtpClientObj->GetNextListEntry();
 }
 }
 }
 while(strcmp(szTmpBuff, "quit") != 0);

 retval = pFtpClientObj->Errnum();
 }
 while(0);

 if (pFtpClientObj)
 delete pFtpClientObj;

 return(retval);
}

Transferring Files

The following example shows how to send and receive files using the EcxFtp-
Client API. The RunCommand() method runs the FTP get and put commands
to transfer an ascii file and a binary file.
int main(int argc, char * argv[])
{
 long retval = -1;

 //
 // List of ftp commands that we would be running using the Ecxpert
 // ftp client API. We basically login to the remote machine and
 // run get and put commands to transfer an ascii file and a binary file.
 //
 char * FtpCommands[] =
 {
 "open flatline.mcom.com",
 "user smani2 smani2",
 "get remote-ascii-file local-ascii-file",
 "put local-ascii-file remote-ascii-file.bak",
 "binary",
 "get remote-binary-file local-binary-file",
 "put local-binary-file remote-binary-file.bak",
268 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxFtpClient Class
 "quit",
 ""
 };

 EcxInit EcxInitObj;

 EcxFtpClient * pFtpClientObj = 0;

 do
 {
 if (EcxInitObj.Errnum() != 0)
 {
 printf("Failed to initialize EcxInit object.\n");
 break;
 }

 if ((pFtpClientObj = new EcxFtpClient) == 0)
 {
 printf("No memory to create Ecxpert ftp client object.\n");
 break;
 }

 if (pFtpClientObj->Init("ecx.ini").Errnum())
 {
 printf("Failed to setup Ecxpert ftp client object.\n");
 break;
 }

 for (int i = 0; strlen(FtpCommands[i]) != 0; ++i)
 {
 printf("\nExecuting Ftp command - %s\n", FtpCommands[i]);

 if (pFtpClientObj->RunCommand(FtpCommands[i]).Errnum())
 {
 printf("Error: %ld - Could not execute command.\n",
 pFtpClientObj->Errnum());
 break;
 }

 printf("Ftp reply code = %d\n", pFtpClientObj->GetReplyCode());
 printf("Ftp reply message = %s\n", pFtpClientObj->GetReplyMsg());

 if (pFtpClientObj->IsReplyGood() != TRUE)
 {
 printf("Command could not be executed successfully.\n");
 }
 }

 retval = pFtpClientObj->Errnum();
 }
 while(0);

 if (pFtpClientObj)
 delete pFtpClientObj;
02 July 99 Chapter 16, The EcxFtpClient Class 269

}EcxFtpClient Class Reference
 return(retval);

}EcxFtpClient Class Reference
Interface ecxftpclient.h

Superclasses EcxBase

Subclasses None

Friend Classes None

Syntax class EcxFtpClient : public EcxBase { ... };

Constructor and Destructor

EcxFtpClient()

Creates an EcxFtpClient object.

Syntax EcxFtpClient(void);

Example See “Using the EcxFtpClient Class” on page 264.

~EcxFtpClient()

Destroys an EcxFtpClient object.

Syntax virtual ~EcxFtpClient();

Example See “Using the EcxFtpClient Class” on page 264.

Methods

This section describes the methods of the EcxFtpClient class.
270 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 }EcxFtpClient Class Reference
GetListCount ()

Retrieves the number of files in the current directory.

Syntax virtual int GetListCount(void)

Returns The number of files in the current directory.

Discussion After running the ls or dir command, this method retrieves the number of
files in the directory listing.

Example See “Listing Files in the Current Directory” on page 265.

GetFirstListEntry ()

Retrieves the name of the first file in the directory listing.

Syntax virtual const char* GetFirstListEntry(void)

Returns A pointer to a character string that contains the name of the first file in the
directory listing.

Discussion After running the ls or dir command, this method retrieves the first file in the
directory listing.

Example See “Listing Files in the Current Directory” on page 265.

GetNextListEntry ()

Retrieves the name of the next file in the directory listing.

Syntax virtual const char* GetNextListEntry(void)

Returns A pointer to a character string that contains the name of the next file in the
directory listing.

Example See “Listing Files in the Current Directory” on page 265.
02 July 99 Chapter 16, The EcxFtpClient Class 271

}EcxFtpClient Class Reference
GetReplyCode ()

Retrives the reply code for the last command executed.

Syntax virtual int GetReplyCode(void)

Returns A pointer to an integer representing the reply code for the last command
executed.

Example See “Using the EcxFtpClient Class” on page 264.

GetReplyMsg ()

Retrieves the reply message for the last command executed.

Syntax virtual const char* GetReplyMsg(void)

Returns A pointer to a character string that contains the reply message for the last
command executed.

Example See “Using the EcxFtpClient Class” on page 264.

Init ()

Initializes the FTP client API.

Syntax virtual EcxFtpClient& Init(const char* pEcxIniFileName)

Parameters The Init() method has the following parameters:

Returns A reference to this EcxFtpClient object.

Discussion This method must be called before you can call the RunCommand() method.

Example See “Using the EcxFtpClient Class” on page 264.

pEcxIniFileName A pointer to a character string that contains the full path to the
ECXpert initialization file
272 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 }EcxFtpClient Class Reference
IsReplyGood ()

Indicates whether the last FTP command executed was successful or not.

Syntax virtual int IsReplyGood(void)

Returns Returns a 0 or 1. A value of 0 indicates that the last FTP command failed, and a
value of 1 indicates that the last FTP command executed successfully.

Example See “Using the EcxFtpClient Class” on page 264.

RunCommand ()

Runs a command.

Syntax virtual EcxFtpClient& RunCommand(const char* pCmdString)

Parameters The RunCommand() method has the following parameters:

Returns A reference to this EcxFtpClient object.

Example See “Using the EcxFtpClient Class” on page 264.

pCmdString A character string that contains the FTP client command to be
run
02 July 99 Chapter 16, The EcxFtpClient Class 273

}EcxFtpClient Class Reference
274 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

17
The EcxService Class
his chapter describes the EcxService class, which represents service
records in an ECXpert database. This chapter contains the following

sections:

• About the EcxService Class

• Using the EcxService Class

• EcxServiceClass Reference

T

02 July 99 Chapter 17, The EcxService Class 275

About the EcxService Class
About the EcxService Class
The EcxService() class represents service records in an ECXpert database.
Only administrators can add, change, or delete a service record. A user must be
logged in to the database before accessing a record.

Methods Summary list:

Constructor and destructor

EcxService(void) Creates an EcxService object.

virtual ~EcxService(void) Destroys an EcxService object.

Allowing database access

SetLogin Allows the object to access the database.

Adding, retrieving, changing and deleting service records

Add Adds a service record to the database.

Change Changes a service record in the database.

Delete Deletes a service from the database.

Get Retrieves a service record from the database.

Listing service records

List Retrieves a list of service records from the database

More Determines whether more records are left in the list.

Next Associates the object with the next record in the list.

Resetting an object’s state

Clear Clears the state associated with an object, including its
list

Accessing key fields

Id Determines or specifies the ID number of the service.

Accessing other fields

Name Determines or specifies the name of the service.

Type Determines or specifies the service type.

PathName Determines or specifies the path name to the service
code file.

EntryName Determines or specifies the entry name of the service.

MaxThread Determines or specifies the maximum number of
threads the service can have.

Param Determines or specifies the service description.
276 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxService Class
Using the EcxService Class
The following sections show how to:

• Create a service object

• Add a service

• List all services

• Modify a service

• Delete a service

Creating a Service Object

The following example shows how to create a Service object.

ECXService * pService = NULL;

if((pService = new EcxService())->Errnum()) {
cout << “EcxServiceObjectError:” << endl;
cout << “\tErrnum: “ << pService->Errnum() << endl;
cout << “\tErrmsg: “ << pService->Errmsg() << endl;
return(NULL);

}

if((pService->SetLogin(*pLogin)).Errnum()) {
cout << “EcxService.SetLogin() Failed:” << endl;
cout << “\tErrnum: “ << pService->Errnum() << endl;
cout << “\tErrmsg: “ << pService->Errmsg() << endl;
return(NULL);

return (pService);

ObjPerm Determines or specifies the record’s access permis-
sions.

ModByGroup Determines the group that last modified the record.

ModByUser Determines the user that last modified the record.

ModDt Determines the date the record was last modified.
02 July 99 Chapter 17, The EcxService Class 277

Using the EcxService Class
Adding a Service

The following example shows how to add a service.

pService->Clear();

pService->Name(“Test service”);
pService->Type(10);
pService->PathName(“TestPathName”);
pService->EntryName(“TestEntryName”);
pService->MaxThread(5);
pService->Param(“Test param”);
pService->ObjPerm(755);

if((pService->Add()).Errnum()) {
cout << “EcxService.add() Failed” << endl;
cout << “\tErrnum: “ << pService->Errnum() << endl;
cout << “\tErrmsg: “ << pService->Errmsg() << endl;
return(NULL);

}

id = pService->Id();

cout << “*** Added service: “ << id << endl;

return(0);

Listing All Services

The following example shows how to generate a list of all services.

pService->Clear();

If((pService->List()).Errnum()) [
cout << “EcxService.List() Failed:” << endl;
cout << “\tErrnum: “ << pService->Errnum() << endl;
cout << “\tErrmsg: “ << pService->Errmsg() << endl;
return (pService->Errnum());

}

cout << “*** Listing Services” << pService ->More();
cout << “ records found. ***” << endl;

while (pService->More()) {
cout << pService->Id() << “:”;
cout << pService->Name() << “:”;
cout << pService->Type() << “:”;
278 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxService Class
cout << pService->PathName() << “:”;
cout << pService->EntryName() << “:”;
cout << pService->MaxThread() << “:”;
cout << pService->Param() << “:”;
cout << pService->ObjPerm() << “:”;
cout << pService->ModByGroup() << “:”;
cout << pService->ModByUser() << “:”;
cout << pService->ModDt() << “:”;
pService->Next(;

}

return(0);

Modifying a Service

The following example shows how to modify a service.

pService->Clear();
pService->Id(id);

if((pService->Get()).Errnum()) {
cout << “EcxService.Get() Failed” << endl;
cout << “\tErrnum: “ << pService->Errnum() << endl;
cout << “\tErrmsg: “ << pService->Errmsg() << endl;
return(pService->Errnum());

}

pservice->Type(20);

if((pService->Change()).Errnum()) {
cout << “EcxService.Change() Failed:” << endl;
cout << “\tErrnum: “ << pService->Errnum() << endl;
cout << “\tErrmsg: “ << pService->Errmsg() << endl;
return(pService->Errnum());

}

return(0);

Deleting a Service

The following example shows how to delete a service.
02 July 99 Chapter 17, The EcxService Class 279

EcxServiceClass Reference
pService->Clear();

pService->Id(id);

if((pService->Delete()).Errnum()) {

cout << “EcxService.Delete() Failed” << endl;

cout << “\tErrnum: “ << pService->Errnum() << endl;

cout << “\tErrmsg: “ << pService->Errmsg() << endl;

return(pService->Errnum());

}

cout << “*** Deleted service: “ << id << endl;

return(0);

EcxServiceClass Reference
Interface ecxservice.h

Superclasses EcxBase

Subclasses None

Friend Classes None

Syntax class EcxService : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the member as an adminis-
trator:

Syntax static int ADMINISTRATOR;

ADMINISTRATOR Administrator
280 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceClass Reference
Constructor and Destructor

EcxService(void)

Creates an EcxService object.

Syntax EcxService(void);
EcxService(EcxLogin&login)

Example See “Using the EcxService Class” on page 277.

~EcxService(void)

Destroys an EcxService object.

Syntax virtual ~EcxService(void);

Example See “Using the EcxService Class” on page 277.

Methods

This section describes the methods of the EcxService class.

Add ()

Adds a service record to the database.

Syntax Ecxservice& Add(void);

Returns A reference to this service object.

Discussion You must be an administrator and be logged in before calling this method. You
must specify the service’s ID number in the object, by calling the Id() method,
before calling this method.

Example See “Adding a Service” on page 278.

See also The Id() method on page 283.
02 July 99 Chapter 17, The EcxService Class 281

EcxServiceClass Reference
Change()

Changes a service record in the database.

Syntax EcxService& Change(void);

Returns A reference to this service object.

Discussion You must be an administrator and be logged in before calling this method. This
method updates the last record retrieved by calling the object’s Get(),
List(), or Next() method. You must specify the service’s ID number in the
object, by calling the Id() method, before calling this method.

Warning If you do not call the object’s Get(), List(), or Next() method first, the
object’s ID number field, which is set by calling the Id() method, specifies the
record that is changed. In this case, the record is completely overwritten using
the object’s fields. Any fields not set in the object will be replaced by 0 or NULL
in the database.

Example See “Modifying a Service” on page 279.

See also The Get() method on page 283. The List() method on page 284. The
Next() method on page 286. The Id() method on page 283.

Clear()

Clears the state associated with an object, including its list.

Syntax void Clear(void);

Example See “Adding a Service” on page 278.

Delete()

Deletes a service from the database.

Syntax EcxService& Delete(void);

Returns A reference to this service object.
282 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceClass Reference
Discussion You must be an administrator and be logged in before calling this method. You
must specify the service’s ID number in the object, by calling the Id() method,
before calling this method.

Example See “Deleting a Service” on page 279.

See also The Id() method on page 283.

EntryName ()

Determines or specifies the entry name of the service.

Syntax const char * Name() const;

void EntryName(const char*);

Returns The first form of the method returns a pointer to a character string that contains
the entry name of the service.

Discussion Use the first form of the method to determine the service entry name. Use the
second form to specify the service entry name.

Example See “Adding a Service” on page 278.

Get()

Retrieves a service record from the database.

Syntax EcxService& Get(void);

Returns A reference to this service object.

Discussion You must specify the service’s ID number in the object, by calling the Id()
method, before calling this method.

Example See “Adding a Service” on page 278.

See also The Id() method on page 283.

Id ()

Determines or specifies the ID number of the service.
02 July 99 Chapter 17, The EcxService Class 283

EcxServiceClass Reference
Syntax unsigned int Id()const;

void Id(const unsigned int)

Returns The first form of the method returns an unsigned integer that contains the ID
number of the service.

Discussion Before you call the Add(), Change(), Delete(), or Get() methods, you
must first specify the service’s ID number in the object by calling the Id()
method. Use the first form of the method to determine the service’s ID number.
Use the second form to specify the service’s ID number.

Example See “Adding a Service” on page 278.

List()

Retrieves a list of service records from the database.

Syntax EcxService& List(void);

Returns A reference to this service object.

Example See “Listing All Services” on page 278.

MaxThread ()

Determines or specifies the maximum number of threads the service can have.

Syntax unsigned int MaxThread() const;

void MaxThread(const unsigned int);

Returns The first form of the method returns an unsigned integer that contains the
maximum number of threads.

Discussion Use the first form of the method to determine the maximum number of threads.
Use the second form to specify the maximum number of threads.

Example See “Adding a Service” on page 278.

ModByGroup()

Determines the group that last modified the record.
284 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceClass Reference
Syntax const char* ModByGroup() const;

Returns A pointer to a character string that contains the group.

ModByUser()

Determines the user that last modified the record.

Syntax const char* ModByUser() const;

Returns A pointer to a character string that contains the user name.

ModDt()

Determines the date the record was last modified.

Syntax const char* ModDt() const;

Returns A pointer to a character string that contains the date.

More ()

Determines whether more records are left in the list.

Syntax long More(void);

Returns A long integer that contains the number of records not yet accessed from the
list.

Discussion After calling the List() method and before calling the Next() method, the
More() method returns the total number of records in the list. All records have
been accessed when the More() method returns 0.

Example See “Listing All Services” on page 278.

See also The List() method on page 284. The Next() method on page 284.

Name()

Determines or specifies the name of the service.
02 July 99 Chapter 17, The EcxService Class 285

EcxServiceClass Reference
Syntax const char* Name() const;

void Name(const char* name);

Parameters The Name() method has the following parameters:

Returns The first form of the method returns a pointer to a character string that contains
the name.

Discussion Use the first form of the method to determine the service’s name. Use the
second form to specify the name.

Example See “Adding a Service” on page 278.

Next()

Associates the object with the next record in the list.

Syntax EcxService& Next(void);

Returns A reference to this member object.

Discussion The Next() method sets the fields in the object to match those in the next
record in the list. The Next() method decrements the number of records not
yet accessed, which is returned by the More() method.

Warning Do not call the Next() method if the More() method returns a value less
than 1; the results are unpredictable.

Example See “Listing All Services” on page 278.

See also The More() method on page 285.

ObjPerm()

Determines or specifies the record’s access permissions.

Syntax unsigned int ObjPerm() const;

void ObjPerm(const unsigned int permissions);

name A pointer to a character string that contains the service’s name.
286 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceClass Reference
Parameters The ObjPerm() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the
permissions.

Discussion Use the first form of the method to determine the record’s access permissions.
Use the second form to specify the permissions. The ObjPerm() method does
not modify the database.

Example See “Adding a Service” on page 278.

Param ()

Determines or specifies the service description.

Syntax const char * Param() const;

void Param(const char*);

Returns The first form of the method returns a pointer to a character string that contains
the service description.

Discussion Use the first form of the method to determine the service description. Use the
second form to specify the service description.

PathName ()

Determines or specifies the path name to the service code file.

Syntax const char * Name() const;

void PathName(const char*);

Returns The first form of the method returns a pointer to a character string that contains
the path name.

Discussion Use the first form of the method to determine the path name to the service
code file. Use the second form to specify the path name to the service code file.

permissions An unsigned integer that specifies the access permissions.
02 July 99 Chapter 17, The EcxService Class 287

EcxServiceClass Reference
SetLogin()

Allows the object to access the database.

Syntax EcxService& SetLogin(EcxLogin& login);

Parameters The SetLogin() method has the following parameters:

Returns A reference to this service object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the SetLogin() method before using this object.

Example See “Creating a Service Object” on page 277.

See also The EcxService constructor on page 281. The EcxLogin class on page 127.

Type()

Determines or specifies the type of service.

Syntax unsigned int Type() const;

void Type(const unsigned int type);

Parameters The Type() method has the following parameters:

Returns The first form of the method returns an unsigned integer that contains the type.

login A reference to a valid EcxLogin object

type An unsigned integer that specifies whether the member is an
administrator.
288 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceClass Reference
Discussion You can use any of the following values:

Example See “Adding a Service” on page 278.

See also “Class Variables” on page 280.

Constant Value Description

STunknown 0 unknown

STinternal 1 internal service (e.g. parse,
translate)

STscript 2 external script file

STexe 3 external executable file

STdll 4 a function in a shared library
(i.e. DLL or .so)
02 July 99 Chapter 17, The EcxService Class 289

EcxServiceClass Reference
290 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

18
The EcxServiceList Class
his chapter describes the EcxServiceList class, which represents
service list records in an ECXpert database. This chapter contains the

following sections:

• About the EcxServiceList Class

• Using the EcxServiceList Class

• EcxServiceList Class Reference

T

02 July 99 Chapter 18, The EcxServiceList Class 291

About the EcxServiceList Class
About the EcxServiceList Class
The EcxServiceList() class defines methods you can use to

Methods Summary list:

Constructor and destructor

EcxServiceList(void) Creates an EcxServiceList object.

virtual
~EcxServiceList(void)

Destroys an EcxServiceList object.

Allowing database access

SetLogin Allows the object to access the database.

Adding, retrieving, changing and deleting service list records

Add Adds a service list record to the database.

Change Changes a service list record in the database.

Delete Deletes a service list from the database.

Get Retrieves a service list record from the database.

Listing service list records

List Retrieves a list of service list records from the data-
base

More Determines whether more records are left in the list.

Next Associates the object with the next record in the list.

Resetting an object’s state

Clear Clears the state associated with an object, including its
list.

Accessing key fields

ServiceListName Determines or specifies the service list name

SeqNum Determines or specifies the sequence number of the
service in the service list.

Accessing other fields

SndrMBName Determines or specifies the sending member name.

RcvrMBName Determines or specifies the receiving member name.

TypeName Determines or specifies the service file type name OR
service data object type name.

SVRId Determines or specifies the service ID.

SVRName Determines or specifies the service name.
292 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxServiceList Class
Using the EcxServiceList Class
The following sections show how to:

• Create a service list object

• Add a service list

• List all service lists

• Modify a service list

• Delete a service list

Creating a Service List Object

The following example shows how to create a ServiceList object.

ECXServiceList * pServiceList = NULL;

if((pServiceList = new EcxServiceList())->Errnum()) {
cout << “EcxServiceListObjectError:” << endl;
cout << “\tErrnum: “ << pServiceList->Errnum() << endl;
cout << “\tErrmsg: “ << pServiceList->Errmsg() << endl;
return(NULL);

}

if((pServiceList->SetLogin(*pLogin)).Errnum()) {
cout << “EcxServiceList.SetLogin() Failed:” << endl;

ServiceParams Determines or specifies the service parameters.

ErrorHandler Determines the name of user-specified service for
error handler.

Desc Determines or specifies the service description.

ObjPerm Determines or specifies the record’s access permis-
sions.

ModByGroup Determines the group that last modified the record.

ModByUser Determines the user that last modified the record.

ModDt Determines the date the record was last modified.
02 July 99 Chapter 18, The EcxServiceList Class 293

Using the EcxServiceList Class
cout << “\tErrnum: “ << pServiceList->Errnum() << endl;
cout << “\tErrmsg: “ << pServiceList->Errmsg() << endl;
cout << endl;
delete pServiceList;
return(NULL);

return (pServiceList);

Adding a Service List

The following example shows how to add a service list.

pServiceList->Clear();

pService->ServiceListName(“slname”);
pService->SeqNum(seqNum);
pService->SndrMBName(“ectest1”);
pService->RcvrMBName(“ectest2”);
pService->TypeName(“Test Type”);
pService->SVRId(201);
pService->SVRName(Parse);
pService->ServiceParams(“Test Service Params”);
pService->ErrorHandler(“Test Error Handler”);
pService->Desc(“Test Desc”);
pService->ObjPerm(755);

if((pService->Add()).Errnum()) {
cout << “EcxServiceList.add() Failed” << endl;
cout << “\tErrnum: “ << pServiceList->Errnum() << endl;
cout << “\tErrmsg: “ << pServiceList->Errmsg() << endl;
return(NULL);

}

id = pService->Id();

cout << “*** Added serviceList: “ << slname << “, “ << seqNum << endl;

return(0);

Listing All Service Lists

The following example shows how to generate a list of all service lists.
294 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Using the EcxServiceList Class
pServiceList->Clear();

If((pServiceList->List()).Errnum()) [
cout << “EcxServiceList.List() Failed:” << endl;
cout << “\tErrnum: “ << pServiceList->Errnum() << endl;
cout << “\tErrmsg: “ << pServiceList->Errmsg() << endl;
return (pServiceList->Errnum());

}

cout << “*** Listing serviceLists” << pServiceList->More();
cout << “ records found. ***” << endl;

while (pServiceList->More()) {
cout << pServiceList->ServiceListName() << “:”;
cout << pServiceList->SeqName() << “:”;
cout << pServiceList->SndrMBName() << “:”;
cout << pServiceList->RcvrMBName() << “:”;
cout << pServiceList->TypeName() << “:”;
cout << pServiceList->SVRId() << “:”;
cout << pServiceList->SVRName() << “:”;
cout << pServiceList->ServiceParams() << “:”;
cout << pServiceList->ErrorHandler() << “:”;
cout << pServiceList->Desc() << “:”;
cout << pServiceList->ObjPerm() << “:”;
cout << pServiceList->ModByGroup() << “:”;
cout << pServiceList->ModByUser() << “:”;
cout << pServiceList->ModDt() << “:”;
pService->Next(;

}

return(0);

Modifying a Service List

The following example shows how to modify a service list.

pServiceList->Clear();
pServiceList->ServiceListName(slname);
pServiceList->SeqNum(seqNum);

if((pServiceList->Get()).Errnum()) {
cout << “EcxServiceList.Get() Failed” << endl;
cout << “\tErrnum: “ << pServiceList->Errnum() << endl;
cout << “\tErrmsg: “ << pServiceList->Errmsg() << endl;
return(pServiceList->Errnum());

}

pServiceList->TypeName(“Changed Type”);
02 July 99 Chapter 18, The EcxServiceList Class 295

EcxServiceList Class Reference
if((pServiceList->Change()).Errnum()) {
cout << “EcxServiceList.Change() Failed:” << endl;
cout << “\tErrnum: “ << pServiceList->Errnum() << endl;
cout << “\tErrmsg: “ << pServiceList->Errmsg() << endl;
return(pServiceList->Errnum());

}

cout << “*** Changed serviceList: “ << slname << “, “ << seqNum << endl;

return(0);

Deleting a Service List

The following example shows how to delete a list of all service lists.

pServiceList->Clear();

pServiceList->Id(id);

pServiceList->SeqNum(seqNum)

if((pServiceList->Delete()).Errnum()) {

cout << “EcxServiceList.Delete() Failed” << endl;

cout << “\tErrnum: “ << pServiceList->Errnum() << endl;

cout << “\tErrmsg: “ << pServiceList->Errmsg() << endl;

return(pServiceList->Errnum());

}

cout << “*** Deleted serviceList: “ << slname << “, “ << seqNum << endl;

return(0);

EcxServiceList Class Reference
Interface ecxservice.h

Superclasses EcxBase

Subclasses None

Friend Classes None
296 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceList Class Reference
Syntax class EcxFtpClient : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the member as an adminis-
trator:

Syntax static int ADMINISTRATOR;

Constructor and Destructor

EcxServiceList(void)

Creates an EcxFtpClient object.

Syntax EcxServiceList(void);
EcxServiceList(EcxLogin&login)

Example See “Using the EcxServiceList Class” on page 293.

~EcxServiceList(void)

Destroys an EcxFtpClient object.

Syntax virtual ~EcxServiceList(void);

Example See “Using the EcxServiceList Class” on page 293.

Methods

This section describes the methods of the EcxFtpClient class.

ADMINISTRATOR Administrator
02 July 99 Chapter 18, The EcxServiceList Class 297

EcxServiceList Class Reference
Add ()

Adds a service list record to the database.

Syntax EcxServiceList& Add(void);

Returns A reference to this service list object.

Discussion You must be an administrator and be logged in before calling this method. You
must specify the service list name in the object, by calling the Service-
ListName() method, and specify the sequence number of the service in the
service list, by calling the SeqNum() method, before calling this method.

Example See “Adding a Service List” on page 294.

See also The ServiceListName() method on page 304. The SeqNum() method on
page 303.

Change()

Changes a service list record in the database.

Syntax EcxServiceList& Change(void);

Returns A reference to this service list object.

Discussion This method updates the last record retrieved by calling the object’s Get(),
List(), or Next() method. You must be an administrator and be logged in
before calling this method. You must specify the service list name in the object,
by calling the ServiceListName() method, and specify the sequence
number of the service in the service list, by calling the SeqNum() method,
before calling this method.

Warning If you do not call the object’s Get(), List(), or Next() method first, the
object’s name and sequence number fields, which are set by calling the
ServiceListName() method and the SeqNum() method, specify the record
that is changed. In this case, the record is completely overwritten using the
object’s fields. Any fields not set in the object will be replaced by 0 or NULL in
the database.

Example See “Modifying a Service List” on page 295.
298 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceList Class Reference
See also The Get() method on page 300. The List() method on page 300. The
Next() method on page 302. The ServiceListName() method on
page 304. The SeqNum() method on page 303.

Clear()

Clears the state associated with an object, including its list.

Syntax void Clear(void);

Example See “Listing All Service Lists” on page 294.

Delete()

Deletes a service list from the database.

Syntax EcxServiceList& Delete(void);

Returns A reference to this service list object.

Discussion You must be an administrator and be logged in before calling this method. You
must specify the service list name in the object, by calling the Service-
ListName() method, and specify the sequence number of the service in the
service list, by calling the SeqNum() method, before calling this method.

Example See “Deleting a Service List” on page 296.

See also The ServiceListName() method on page 304. The SeqNum() method on
page 303.

Desc ()

Determines or specifies the service description.

Syntax const char * Desc() const;

void Desc(const char*);

Returns The first form of the method returns a pointer to a character string that contains
the service list description.
02 July 99 Chapter 18, The EcxServiceList Class 299

EcxServiceList Class Reference
Discussion Use the first form of the method to determine the service list description. Use
the second form to specify the service list description.

Example See “Adding a Service List” on page 294.

ErrorHandler ()

Determines the name of user-specified service for error handler.

Syntax const char * ErrorHandler() const;

void ErrorHandler (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the name of user-specified service for error handler.

Discussion Use the first form of the method to determine the name of user-specified
service for error handler. Use the second form to specify the name of user-
specified service for error handler.

Example See “Adding a Service List” on page 294.

Get()

Retrieves a service list record from the database.

Syntax EcxServiceList& Get(void);

Returns A reference to this service list object.

Discussion You must specify the service list name in the object, by calling the Service-
ListName() method, and specify the sequence number of the service in the
service list, by calling the SeqNum() method, before calling this method.

Example See “Modifying a Service List” on page 295.

See also The ServiceListName() method on page 304. The SeqNum() method on
page 303.

List()

Retrieves a list of service list records from the database.
300 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceList Class Reference
Syntax EcxServiceList& List(void);

Returns A reference to this service list object.

Discussion If you specify the service list’s name in the object by calling the Service-
ListName() method first, only the record matching with the specified name
will be retrieved. After calling the List() method, the member object contains
fields from the first record from the list.

Example See “Listing All Service Lists” on page 294.

See also The ServiceListName() method on page 304.

ModByGroup()

Determines the group that last modified the record.

Syntax const char* ModByGroup() const;

Returns A pointer to a character string that contains the group.

ModByUser()

Determines the user that last modified the record.

Syntax const char* ModByUser() const;

Returns A pointer to a character string that contains the user name.

ModDt()

Determines the date the record was last modified.

Syntax const char* ModDt() const;

Returns A pointer to a character string that contains the date.

More ()

Determines whether more records are left in the list.
02 July 99 Chapter 18, The EcxServiceList Class 301

EcxServiceList Class Reference
Syntax long More(void);

Returns A long integer that contains the number of records not yet accessed from the
list.

Discussion After calling the List() method and before calling the Next() method, the
More() method returns the total number of records in the list. All records have
been accessed when the More() method returns 0.

Example See “Listing All Service Lists” on page 294.

See also The List() method on page 300. The Next() method on page 302.

Next()

Associates the object with the next record in the list.

Syntax EcxServiceList& Next(void);

Returns A reference to this member object.

Discussion The Next() method sets the fields in the object to match those in the next
record in the list. The Next() method decrements the number of records not
yet accessed, which is returned by the More() method.

Warning Do not call the Next() method if the More() method returns a value less
than 1; the results are unpredictable.

Example See “Listing All Service Lists” on page 294.

See also The More() method on page 301.

ObjPerm()

Determines or specifies the record’s access permissions.

Syntax unsigned int ObjPerm() const;

void ObjPerm(const unsigned int permissions);

Parameters The ObjPerm() method has the following parameters:

permissions An unsigned integer that specifies the access permissions.
302 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceList Class Reference
Returns The first form of the method returns an unsigned integer that contains the
permissions.

Discussion Use the first form of the method to determine the record’s access permissions.
Use the second form to specify the permissions. The ObjPerm() method does
not modify the database.

Example See “Adding a Service List” on page 294.

RcvrMBName ()

Determines or specifies the receiving member name.

Syntax const char * RcvrMBName() const;

void RcvrMBName (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the receiving member name.

Discussion Use the first form of the method to determine the receiving member name. Use
the second form to specify the receiving member name. Because it is the
foreign key, the receiving member name must exist in the database.

Example See “Listing All Service Lists” on page 294.

SeqNum

Determines or specifies the sequence number of the service in the service list.

Syntax unsigned int SeqNum() const;

void SeqNum (const unsigned int);

Returns The first form of the method returns an unsigned integer that contains the
sequence number of the service in the service list.

Discussion Before you call the Add(), Change(), Delete(), or Get() methods, you
must first specify the service’s sequence number within the service list in the
object by calling the SeqNum() method. Use the first form of the method to
determine the sequence number of the service in the service list. Use the
second form to specify the sequence number of the service in the service list.
02 July 99 Chapter 18, The EcxServiceList Class 303

EcxServiceList Class Reference
Example The Add() method on page 298. The Change() method on page 298. The
Delete() method on page 299. The Get() method on page 300. The
ServiceListName() method on page 304.

ServiceListName ()

Determines or specifies the service list name.

Syntax const char * ServiceListName() const;

void ServiceListName (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the service list name.

Discussion Before you call the Add(), Change(), Delete(), or Get() methods, you
must first specify the service list name in the object by calling the Service-
ListName() method. Use the first form of the method to determine the
service list name. Use the second form to specify the service list name.

Example The Add() method on page 298. The Change() method on page 298. The
Delete() method on page 299. The Get() method on page 300. The
SeqNum() method on page 303.

ServiceParams ()

Determines or specifies the service parameters.

Syntax const char * ServiceParams() const;

void ServiceParams (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the service parameters.

Discussion Use the first form of the method to determine the service list name. Use the
second form to specify the service parameters.

Example See “Listing All Service Lists” on page 294.
304 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 EcxServiceList Class Reference
SetLogin()

Allows the object to access the database.

Syntax EcxServiceList& SetLogin(EcxLogin& login);

Parameters The SetLogin() method has the following parameters:

Returns A reference to this service list object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the SetLogin() method before using this object.

Example See “Creating a Service List Object” on page 293.

See also The EcxServiceList constructor on page 297. The EcxLogin class on
page 127.

SndrMBName ()

Determines or specifies the sending member name.

Syntax const char * SndrMBName() const;

void SndrMBName (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the sending member name.

Discussion Use the first form of the method to determine the sending member name. Use
the second form to specify the sending member name. Because it is the foreign
key, the sending member name must exist in the database.

Example See “Listing All Service Lists” on page 294.

SVRId ()

Determines or specifies the service ID.

Syntax unsigned int SVRId() const;

login A reference to a valid EcxLogin object
02 July 99 Chapter 18, The EcxServiceList Class 305

EcxServiceList Class Reference
void SvrId (const unsigned int);

Returns The first form of the method returns an unsigned integer that contains the
service ID.

Discussion Use the first form of the method to determine the sequence number of the
service in the service list. Use the second form to specify the service ID.

Example See “Listing All Service Lists” on page 294.

SVRName ()

Determines or specifies the service name.

Syntax const char * SVRName() const;

void SVRName(const char*);

Returns The first form of the method returns a pointer to a character string that contains
the service name.

Discussion Use the first form of the method to determine the service name. Use the second
form to specify the service name.

Example See “Listing All Service Lists” on page 294.

TypeName ()

Determines or specifies the service file type name OR service data object type
name.

Syntax const char * TypeName() const;

void TypeName (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the service ID.

Discussion Use the first form of the method to determine the service ID. Use the second
form to specify the service ID.

Example See “Listing All Service Lists” on page 294.
306 Netscape ECXpert Site Administrator’s Handbook 02 July 99

C h a p t e r

19
Customizing Reports
his chapter describes how you can use the Actuate Report System to
create custom reports for use with ECXpert. This chapter contains the

following sections:

• Overview

• Starting a New Report

• Building a Query

• Laying Out a Report

• Adding Report Parameters

• Building Complex Queries

• Displaying Groups of Data

• Displaying Row-related Data

T

02 July 99 Chapter 19, Customizing Reports 307

Overview
Overview
The Actuate Report System is a very powerful database reporting tool. Actuate
comes with hundreds of pages of documentation. This chapter does not
attempt to cover much of the information provided by Actuate; rather, this
chapter provides just enough information to get started using Actuate with an
ECXpert database. You should find Actuate easier to use after reading this
chapter.

You will probably find that you need some knowledge of the SQL Select
statement if you want to do anything complicated. Although Actuate builds a
Select statement for you when you specify the fields you want to display in
your report, you still need to know how to interpret the Select statement.

You will also need to refer to the ECXpert database schema presented in
“ECXpert Database Schema” on page 347. The schema identifies the fields you
can use to create the report and the relationships between tables.

There are many strategies for creating reports and learning how to interpret the
data in the ECXpert database. The strategy shown in this chapter is to first
create a report that uses an individual table, then create a report that uses
multiple tables and groups data. If you follow this strategy, you will learn how
easy it is to use Actuate’s basic features. You will also become familiar with the
contents of the database tables that you are interested in. When you are ready
to create your own multiple-table reports, you will be familiar with both
Actuate and the data from which your report is prepared.

Warning The ECXpert release 3.0 database schema on which you build your reports is
subject to change in future versions of the ECXpert System. You should
consider the potential reimplementation effort associated with an upgrade to
the database when deciding how much effort you want to invest creating
custom reports.
308 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Starting a New Report
Starting a New Report
You create reports with Actuate’s Developer Workbench. After you start the
Workbench, choose New from the File menu. You are prompted for the kind of
project. Choose New Report Wizard to create your report, as shown in
Figure 19.1.

Figure 19.1 Choosing the project type
02 July 99 Chapter 19, Customizing Reports 309

Starting a New Report
After you choose OK, the wizard specification box appears. You can fill in all
of the sections; however, you need not fill in any. You may find it convenient
to fill in Section 2, “Connection,” as shown in Figure 19.2. This section allows
you to specify the kind of database connection (Oracle), the default user name,
password, and host.

Note Filling in these connection parameters does not connect you to the database.
To ensure that your configuration is correct, you can run Oracle’s SQL*Plus or a
standard report provided with ECXpert using the connection parameters.

When you finish with the wizard specification, choose Finish.

Figure 19.2 New report wizard
310 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Starting a New Report
When the New Report Wizard box closes, you are placed in the Design Editor,
as shown in Figure 19.3. This editor has two parts; the structure pane on the left
and the layout pane on the right. The structure pane shows all of the objects
created by the New Report Wizard. You do not need to work with them yet.
Just select one of them, such as NewReportApp, and then choose Data Source
from the View menu to start describing the SQL Select statement you want your
report to execute.

Figure 19.3 The design editor
02 July 99 Chapter 19, Customizing Reports 311

Building a Query
Building a Query
You can build a SQL Select statement to drive your report in the Query Editor.
If you are not logged into a database, Actuate prompts you for the user name
and password using the default values that you specified in the New Report
Wizard, as shown in Figure 19.4. You can change the values if you want. If you
want to change the host, you must change the Connection object in the
structure pane; see Figure 19.24 on page 332. Figure 19.4 shows the login
dialog.

Figure 19.4 Login dialog for Oracle
312 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Building a Query
After you log in, the Query Editor appears, as shown in Figure 19.5. It consists
of a pane on top for visually representing data and a tab-selected pane on the
bottom for entering and viewing the SQL statement specification. A database
browsing window is also available for selecting tables.

Figure 19.5 The query editor
02 July 99 Chapter 19, Customizing Reports 313

Building a Query
You select the tables you want to use from the database browsing window and
drag them into the upper pane. In this part of the example, only
MBADDRESSES is used, as shown in Figure 19.6. Dragging a table into the
upper pane modifies the From clause in the SQL-tab of the lower pane.

Figure 19.6 Dragging tables to the visual pane
314 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Building a Query
After you drag the tables to the upper pane, select the Columns tab from the
lower pane. This allows you to drag columns from the table in the upper pane
and drop them under Column Name in the lower pane. You can drag and drop
the asterisk (*) if you want to quickly select all columns in the table. Figure 19.7
shows the Query Editor after MBANAME, MBAQUAL, and MBAQUALID have
been selected.

Figure 19.7 Selecting columns
02 July 99 Chapter 19, Customizing Reports 315

Building a Query
After you have selected your tables from the database browser window and
your columns from the upper pane, you can refine your SQL statement by
selecting tabs in the lower pane and making further specifications.

Figure 19.8 shows the lower pane after selecting the OrderBy tab. You can use
the pane to specify the Order By clause in your Select statement. In this
example, the Select statement is ordered by the MBANAME column.

Figure 19.8 Specifying the Order By clause

When you are finished, you can choose the SQL tab to view the resulting Select
statement. Figure 19.9 shows the Select statement that is used in this example.

Figure 19.9 A SQL Select statement

At this point, the Select statement used in the first report has been created.
Close the Query Editor to return to the Design Editor.
316 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Laying Out a Report
Laying Out a Report
You use the Design Editor to lay out your report. The following sections show
you how to

• create frames for the data you want to display

• set up fields in the frames to display the data

• add headers and footers to your report

Along the way, you will learn how to run the report and view the appearance
of your layout.

Creating Frames

A report is divided into various sections. Initially, a report contains the
following sections:

• Report:PageHeader for items you want to appear at the top of each page

• Report:Before for items you want to appear only on the first page

• Report:Content for the main content of your report

• Report:After for items you want to appear on the last page

• Report:PageFooter for items you want to appear at the bottom of each page

• Report:Subpage for items you want to appear as a section within a page

Before you can display anything in a report section, you must create a frame
and drag it into the section. To create a frame, select the structure tool (third
icon from the top) from the left of the structure pane. A structure palette
appears. Select and drag a frame structure (fifth icon from the right) from the
palette to either the box to the left of the section name in the layout pane or to
the corresponding object in the structure pane.
02 July 99 Chapter 19, Customizing Reports 317

Laying Out a Report
Figure 19.10 shows the structure palette and the Class Name prompt that
appears after dropping the form in the appropriate place. Each object is
identified by its name; typically, you can accept the default. A discussion of the
use of subclasses is beyond the scope of this chapter.

Figure 19.10 Creating a frame
318 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Laying Out a Report
Figure 19.11 shows the frame in the layout pane. Notice that the frame also
appears in the structure pane. Everything you place in the layout pane also
appears in the structure pane. For any given operation, you can decide which
pane is easier to work from.

Figure 19.11 A display frame

After you create a frame, you can add the items you want to display.

Displaying Data

You can display data in controls. There are several ways to create controls. One
way is to use the Field List that Actuate creates when you build your query. To
display the Field List, select Field List from the View menu. This menu option
toggles whether or not to display the list. You can select one of the fields you
specified in your SQL Select statement and drag it onto the frame.
02 July 99 Chapter 19, Customizing Reports 319

Laying Out a Report
Figure 19.12 shows the Field List and the Class Name prompt that appears after
selecting MBADDRESSES.MBANAME from the Field List and dropping it into
the frame. After you choose a class name, the control is created in the frame.

Figure 19.12 Using the field list

After you create a control, you can double-click on it to display its Component
Editor. The editor shows all the properties of the component.

Note A Component Editor displays the properties and other attributes of any object,
not just controls. Other sections in this chapter show uses of a Component
Editor for other kinds of objects.

Figure 19.13 shows the Component Editor for the control. You specify the data
to display in the ValueExp property; in this case, it is
[MBADDRESSES.MBANAME]. The brackets identify the contents of the property
as a column name. The SampleValue property displays a place holder value
that appears in the layout pane; in this case, it is “A Member Name,” which
appears in the field in the layout pane after you select Apply from the
Component Editor. You can change other properties, such as the font charac-
teristics and text-placement. You can also change the size and position of the
control; however, you may find it easier to do this by selecting the control and
sizing or moving it within the frame.
320 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Laying Out a Report
Note You can resize a frame in the same way you resize a control; either by
changing the size and position in the frame’s Component Editor or by selecting
and resizing the frame in the layout pane.

Figure 19.13 The component editor
02 July 99 Chapter 19, Customizing Reports 321

Laying Out a Report
Another way to create a control is to select the control tool (fifth icon from the
top) from the left of the structure pane. A Control palette appears. You can
select and drag the appropriate kind of control to the frame. Figure 19.14
shows the Control palette and the Class Name prompt after a text control has
been selected.

Figure 19.14 Creating a display field

When you create a control using the palette, Actuate prompts you for the value
expression. If you want to add static text, you can enter it here within double
quotes (“My static text”). You can also choose items from the Field List by
selecting the down-arrow icon.

You can create complex expressions, including a combination of text, column
names, and functions. To create such an expression, click the ellipses (...) to
the right of the down-arrow icon. The Expression Builder appears.
322 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Laying Out a Report
Figure 19.15 shows the Expression Builder after inserting two columns that are
concatenated with an intervening colon (“ : “). If you decide to change your
expression later, you can open the control’s Component Editor and click the
ellipses (...) to the right of the ValExp property; it’s the same property you are
prompted for here.

Figure 19.15 Using the expression builder
02 July 99 Chapter 19, Customizing Reports 323

Laying Out a Report
Running a Report

After you have a frame that displays at least one column value from the
database, you can run your report. If you want the report to display without
data, you must provide additional code that is beyond the scope of this chapter.

To run a report, you must build the report, execute it, and then view the
resulting output. You can perform these steps individually from the Report
menu, or you can select the Build/Run/View option to perform them all at
once. Figure 19.16 shows the Report menu.

Figure 19.16 Building, running, and viewing a report

When you run a report, a Requester dialog appears to request values of param-
eters. Figure 19.17 shows the Requestor dialog. In general, you can ignore the
Output Parameters requested by Actuate. For information about adding your
own parameters, see “Adding Report Parameters” on page 330.

Figure 19.17 Requester dialog
324 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Laying Out a Report
After you respond with OK to the Requester dialog, the report runs.
Figure 19.18 shows the report created thus far.

Along with one line for each row of data, the report shows a generic report
title, which is one of the defaults provided by the New Report Wizard. The
report also contains page numbers and today’s date at the bottom of each page;
these are not shown in the figure.

Figure 19.18 The first report
02 July 99 Chapter 19, Customizing Reports 325

Laying Out a Report
Adding Headers and Footers

When you use the New Report Wizard to create a report, Actuate creates
several objects for you:

• a PageList, which is the container for a page layout

• a Page, which specifies the page size

• a Flow, which defines the printable area of the page

• a text Label for the report title

• text Controls for the page number and the date

You can change the properties of any of these objects in their respective
Component Editors; however, these objects are not visible in the layout pane.
For example, you can adjust the size property of the flow to effectively change
the margins on the page.
326 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Laying Out a Report
Figure 19.19 shows the page list-related objects and the flow’s Component
Editor.

Figure 19.19 Specifying page flow

You can simply modify each page list-object to specify the header and footer
for your report; however, you will probably find it easier to create frames and
use the layout pane to position them. You can delete an unneeded object by
selecting it in either the structure or layout panes and pressing the Delete key.

This example deletes the report title control and replaces it with a frame and
related controls in the Report:Before section. Figure 19.20 shows the new
report control’s Component Editor, in which the font as been changed to 24-
point bold and the text has been placed in the center of the control.
02 July 99 Chapter 19, Customizing Reports 327

Laying Out a Report
Figure 19.20 Adding a report title

The Report:Before section only displays on the first page of the report. You
must provide a frame and related controls in the Report:PageHeader section if
you want to have a heading on each page. You can copy items from one frame
to another by holding the Control key while dragging the object.

To add a footer, you must provide a frame and related controls in the
Report:PageFooter section. One way to set up controls in this section, after you
create the frame, is to drag the page number and date controls from the page to
the frame.

By default, the page footer does not appear on the first page of the report. To
change this situation, you must open the Content - Report object’s Component
Editor and change the Page property’s ShowFooterOnLast field to True.
328 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Laying Out a Report
Figure 19.21 shows the layout pane after adding the Report:Before and
Report:PageFooter sections. It also shows the Content - Report object’s
Component Editor after changing the Page property’s ShowFooterOnLast field.

Figure 19.21 Adding a page footer

Figure 19.22 shows the report after adding headers and footers. Note that the
footer appears right after the last data line. You can set the Page property’s
ContiguousPageFooter field to False if you want the page footer to appear at
the bottom of the last page.
02 July 99 Chapter 19, Customizing Reports 329

Adding Report Parameters
Figure 19.22 A report with headers and footers

Adding Report Parameters
When running a report, the requester dialog appears to prompt for values of
parameters that control the report’s execution. You create a parameter by
selecting Parameters from the View menu, which causes the Parameter Editor to
appear. For each parameter, choose Add and fill in the attributes.

The parameter name must be a valid name for programming purposes; as you
will see, parameters are used in very simple code you must write. You must
provide a data type that represents the kind of data you want to use; for
example, String for alphanumeric data, Integer for whole numbers, and Double
330 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Adding Report Parameters
for decimal numbers. You can provide a group name to display several param-
eters under the same heading. You can also specify whether a value is
required, whether or not it will be displayed at all, and whether what the user
types will be displayed.

Note The Requester dialog displays groups and non-grouped parameters in alpha-
betical order and displays grouped parameters in alphabetical order within
each group. You can only control the placement of items in the Requester
dialog by naming them appropriately.

Figure 19.23 shows the Parameter Editor while adding the Passwd field to the
“Database Login:” group. A value is required and, because Hide Text is
checked, characters typed into the Requester dialog for this parameter will be
changed to asterisks (*) when the report is invoked. (Two other parameters
created in this example are not shown; they are the LoginName and Server
parameters.)

Figure 19.23 Adding a parameter
02 July 99 Chapter 19, Customizing Reports 331

Adding Report Parameters
After you create a parameter, you can use it to set the value of a property. The
Passwd, LoginName, and Server parameters in this example are used to set
properties of the Connection object, which is shown in Figure 19.24.

Figure 19.24 The connection component editor

One of the powerful features of Actuate is the ability to customize its operation
by overriding various methods. You must override the Connection object’s
Connect() method, for example, to set its properties before Actuate estab-
lishes the connection with the database.
332 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Adding Report Parameters
Figure 19.25 shows how to set the properties. The parameter values are
assigned to the properties. The properties are specified on the left-hand side of
the assignment.

Figure 19.25 Setting properties from parameters

Note In general, you can assign value to a property in any object programmatically,
allowing the property to be set or changed when the report executes. A
description of the execution sequence of Actuate methods and when to
override specific methods is beyond the scope of this chapter.
02 July 99 Chapter 19, Customizing Reports 333

Building Complex Queries
Figure 19.26 shows the Requester dialog after the newly added parameter
values have been filled in.

Figure 19.26 Entering parameter values

Building Complex Queries
The section “Building a Query” on page 312 describes how to build a query in
the Query Editor. This section shows how you can join tables in the Query
Editor and how you can create dynamic queries in which the Where clause of a
select statement is created when the report executes.

Joining Tables

To join tables, start the Query Editor and choose the column name you want to
join in one table. Drag the name to the column you want joined in the other
table. This action creates a join based on equality, which specifies selection
where ever the column values for the rows are the same.
334 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Building Complex Queries
The action of dragging from one column to another causes a line to appear
between the columns with a join icon in the middle. You can double-click the
icon to display the join’s Property Editor. The Property Editor allows you to
specify other relationships between the tables. It also allows you to specify
outer joins.

Figure 19.27 shows the MBADDRESSES table joined with the PARTNERSHIPS
table on three fields. The Property Editor for the fist join is also shown. The
SQL tab in the lower pane shows the resulting Where clause.

Figure 19.27 Joining tables

In some cases it is not possible to describe the Where clause visually. For
example, you cannot describe visually the Where clause in the following
statement, which is used by the Partnership example being built here:

Figure 19.28 A complex Where clause

SELECT
 MBADDRESSES.MBANAME,
 PARTNERSHIPS.PNSNDRMBNAME, PARTNERSHIPS.PNSNDRQUAL,
 PARTNERSHIPS.PNSNDRQUALID, PARTNERSHIPS.PNRCVRMBNAME,
 PARTNERSHIPS.PNRCVRQUAL, PARTNERSHIPS.PNRCVRQUALID
FROM
02 July 99 Chapter 19, Customizing Reports 335

Building Complex Queries
 MBADDRESSES MBADDRESSES,
 PARTNERSHIPS PARTNERSHIPS
WHERE
(MBADDRESSES.MBANAME = PARTNERSHIPS.PNSNDRMBNAME AND
 MBADDRESSES.MBAQUAL = PARTNERSHIPS.PNSNDRQUAL AND
 MBADDRESSES.MBAQUALID = PARTNERSHIPS.PNSNDRQUALID) OR
(MBADDRESSES.MBANAME = PARTNERSHIPS.PNRCVRMBNAME AND
 MBADDRESSES.MBAQUAL = PARTNERSHIPS.PNRCVRQUAL AND
 MBADDRESSES.MBAQUALID = PARTNERSHIPS.PNRCVRQUALID)
ORDER BY
 MBADDRESSES.MBANAME ASC

In cases such as this one, you can enter the Where clause in the lower part of
the lower pane after you choose the Conditions tab. Enter the Where clause
exactly as you want it to appear, without the WHERE keyword. Figure 19.29
shows the Where clause under the Conditions tab.

Figure 19.29 Entering a Where clause in the Query Editor
336 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Building Complex Queries
Figure 19.30 shows the resulting Select statement in the lower pane after
choosing the SQL tab.

Figure 19.30 The revised Select statement

Creating Dynamic Queries

The following example shows an alternative way of specifying the Where
clause of a Select statement that you can use to change the query when the
report executes. This example dynamically modifies the Where clause shown in
Figure 19.27 so that it performs the correct query for the Partnership, as shown
in Figure 19.28. This Where clause in this example does not actually need to be
dynamic because it does not require any parameters or control structures (such
as “if then, else, end if”); however, this section shows how to set up the clause
in a dynamic way.

To create a dynamic Where clause, you must override the DataStream’s object’s
Start() method. The DataSteam object contains several variables, one of
which is WhereClause. You set the WhereClause variable to contain the clause
you want to use when you execute the report.
02 July 99 Chapter 19, Customizing Reports 337

Displaying Groups of Data
Figure 19.31 shows the WhereClause variable being set so that it modifies the
clause in Figure 19.27 to become the one in Figure 19.28.

Figure 19.31 Specifying the Where clause at runtime

Displaying Groups of Data
Often, you want your report to group data in some meaningful way. This
example shows how to group partnerships by member—the member may be
either a sender or a receiver. Thus, if member A forms a partnership with
member B, the report displays the partnership in a group for member A as well
as a group for member B. The Select statement in Figure 19.28 handles the join
requirement. This section shows how to set up the report to display the
partnerships grouped by member.

To create a group, you select the Group icon (third icon from the left) from the
Structure palette and drag it to the Report:Content section.

Warning Unpredictable (and erroneous) results occur if you drop the group object in a
Report section other than the Report:Content section.
338 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Displaying Groups of Data
You must specify a column or variable for the Group section’s Key property. A
change in the value of the key causes a new group to appear in the report. If
you specify a variable for the key, it must be defined in the DataRow object.
See “Displaying Row-related Data” on page 342 for more information.

Figure 19.32 shows a the group section’s Component Editor in which the key is
the member name.

Figure 19.32 Specifying a group key

Within the group, you add frames and controls within the various sections:

• Group:Before contains items to display when the key value changes.

• Group:Content contains items to display as detail lines within the group.

• Group:After contains items to display after the key value has changed but
before the next Group:Before section appears in the report.
02 July 99 Chapter 19, Customizing Reports 339

Displaying Groups of Data
Figure 19.33 shows a report that displays the member name in the
Group:Before section, a partnership row consisting of two lines (one for the
sender, the other for the receiver) in the Group:Content section, and a blank
line in the Group:After section.

Figure 19.33 Reporting grouped data
340 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Displaying Groups of Data
Figure 19.34 shows the output of this report.

Figure 19.34 Output from the grouped data
02 July 99 Chapter 19, Customizing Reports 341

Displaying Row-related Data
Displaying Row-related Data
The report shown in Figure 19.34 displays a 1 if the partnership is active
because it simply displays the integer value stored in the database that repre-
sents an active partnership. This section shows how you can create a variable
and set its value based on a value in the row. In this example, the variable is
created to display a database value in a more meaningful way.

The DataRow object contains a per-instance variable for each column that you
specified in your Select statement. These variables are named by concatenating
the table name, an underscore character (_), and the column name; for
example, PARTNERSHIPS_PNACTIVE is the variable associated with the
PNACTIVE column of the PARTNERSHIPS table.

You can add other variables to display additional row-related data. To create a
variable, open the DataRow object’s Component Editor and choose the
Variables tab. Choose New to add a new variable.

A Class Variable prompt appears. In it you specify the variable name, the data
type, the kind of variable, and its visibility. (Visibility is beyond the scope of
this chapter; choose the default.) For efficiency, specify the type if you know it.
If you want Actuate to handle type conversion, specify Variant for the data
type. You should specify Instance for a row-related variable; this kind of
variable exists for the duration of the row.
342 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Displaying Row-related Data
Figure 19.35 shows the Class Variable prompt in which the ActiveFlag variable
is being created.

Figure 19.35 Adding a class variable

After you create a variable, you can use it with a column from the database.
You specify the relationship between your variable and a column variable by
overriding the DataRow object’s OnRead() method.
02 July 99 Chapter 19, Customizing Reports 343

Displaying Row-related Data
Figure 19.36 shows an if-then-else-endif construct that sets ActiveFlag based on
the value of the PARTNERSHIPS_PNACTIVE variable.

Figure 19.36 Setting a variable using a row’s column value

After you define a variable in the DataRow object, you can use it in the same
way as you use a database column. Figure 19.37 shows how to select a row-
related variable to display in a text control.

Figure 19.37 Displaying a row-based variable
344 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Displaying Row-related Data
Figure 19.38 shows the report that displays this variable.

Figure 19.38 The second report
02 July 99 Chapter 19, Customizing Reports 345

Displaying Row-related Data
346 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Appendix

A
ECXpert Database Schema
his appendix details the table structure of the database underlying the
ECXpert System.

The following topics are presented:

• Cautions in Using the Database Schema

• Extending Table and Rollback Segment Space

• Values of AckState

• Alphabetical Listing of Tables

• Schema Overview

• System-wide Tables

• Membership-related Tables

• Partnership-related Tables

• Certificate-related Tables

• Tracking-related Tables

T

02 July 99 Appendix A, ECXpert Database Schema 347

Cautions in Using the Database Schema
Cautions in Using the Database Schema
The database schema for Version 3.0 of the ECXpert System is subject to
change in future versions of ECXpert. You should only use the API described in
this manual to access the database outside of ECXpert. If you rely on the
schema, you should consider the potential reimplementation effort that you
could incur as the result of an upgrade to the database.

Extending Table and Rollback Segment Space
You can extend your tablespace size and rollback segment space by following
the steps below:

1. Log onto Solaris with your Oracle account. For example:

login: oracle
password: oracle

2. Launch the Oracle Server Manager utility.

svrmgrl
SVRMGR> connect system/manager

Note The default password is manager; yours may differ.

3. Enlarge the USERS and SYSTEM default tablespaces.

For example, if the user default tablespace is USERS and the system default
tablespace is SYSTEM:

SVRMGR> alter tablespace USERS
add datafile ’/export /app/oracle/product/8.0.4 /dbs/usrdataECX20-2.dbf’ size 100M;

SVRMGR> alter tablespace SYSTEM
add datafile ’/export/app/oracle/product/8.0.4/dbs/systECX20-2.dbf’ size 50M;

In the datafile command above, change “size 50M” to reflect the table
space size you want to set. Netscape recommends you use the following
formula to estimate the tablespace size needed for ECXpert:

• 2.5kB * number of documents received daily * number of days retained

For example, if you expect to process five documents per day and retain
the document information for five days, you should set the table space size
to at least 2.5 kB * 5 (documents) * 5 (days retained) = 625kB.
348 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Values of AckState
4. Enlarge the rollback segment size.

Note For the rollback segment size, estimate 1.5 - 2 times the largest tablespace.

For example, if the user default tablespace is USERS and the system default
tablespace is SYSTEM:

SVRMGR> alter tablespace RBS
add datafile ’/export/oracle/product/8.0.4 /dbs/usrdataRBWG2.dbf’ size 300M;

SVRMGR> alter tablespace RBS
add datafile ’/export/oracle/product/8.0.4 /dbs/systRBWG5.dbf’ size 300M;

Values of AckState
The AckState column stores the acknowledgment status when Functional
Acknowledgments (FAs/997s) or CONTRL messages are requested. The column
appears in the TrkIntchg (TIAckState), TrkGroup (TGAckState), and TrkDoc
(TDAckState) tables. The actual value of AckState is computed by adding
together the applicable combination of the following values:

To understand the usage of these values, we can break the above definitions
into three categories:

• basic state (Asunknown, ASwaiting)

• acknowledgment status (ASok, ASerror, ASreject, ASpreject)

• acknowledgment flavor (ASsent, ASsendFailed, ASreconciled)

Defined State Value

ASunknown 0

ASwaiting 1

ASok 2

ASerror 4

ASreject 6

ASpreject 16

ASsent 32

ASsendFailed 64

ASreconciled 128
02 July 99 Appendix A, ECXpert Database Schema 349

Values of AckState
The acknowledgment status can be added to the acknowledgment flavor to get
a complete picture of a document record’s corresponding acknowledgment
state.

Examples Let’s consider some scenarios and see how this would work.

Outbound EDI

In the case of outbound EDI, the map direction is Application to EDI or EDI to
EDI. After successful translation, Translate assigns ASwaiting to the document
record.

When the 997 or CONTRL is returned in response to this document, this is
parsed and the AckState of the gets a flavour of ASreconciled added to the state
extracted from the acknowledgment. Thus, if the trading partner rejects this
document for whatever reason, the AckState for this document would be ASrec-
onciled added to ASreject.

Inbound EDI

In this case, the map direction is EDI to application. FAgen generates the
acknowledgment and assigns an initial status to the document (ASok, ASreject,
etc.). When Gateway sends the acknowledgment out, the AckState of the
original document is updated with the ASsent or ASsendFailed flavor. Thus, if
we reject an inbound EDI document and Gateway succeeds in sending this out,
the AckState of this document would be ASsent added to ASreject.

Messages
Displayed

Table A.1 lists the messages displayed in the Tracking tabs for various values of
AckState.

Table A.1 Messages displayed for various values of AckState

If AckState has... And... Message Displayed is...

ASwaiting only
added
(AckState =
ASwaiting)

acknowledgment
Overdue Date >
current date

Waiting

acknowledgment
Overdue Date <=
current date

Overdue
350 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Values of AckState
ASreconciled
added

ASok has been added
to AckState

Reconciled (OK)

ASerror has been
added to AckState

Reconciled (Error)

ASreject has been
added to AckState

Reconciled (Reject)

ASpreject has been
added to AckState

Reconciled (Partial) Reject

otherwise Reconciled

ASsendFailed
added

ASok has been added
to AckState

Sent (OK)

ASerror has been
added to AckState

Sent (Error)

ASreject has been
added to AckState

Sent (Reject)

ASpreject has been
added to AckState

Sent (Partial) Reject

otherwise Sent

ASsent added ASok has been added
to AckState

Send Failed (OK)

ASerror has been
added to AckState

Send Failed (Error)

ASreject has been
added to AckState

Send Failed (Reject)

ASpreject has been
added to AckState

Send Failed (Partial) Reject

otherwise Send Failed

Table A.1 Messages displayed for various values of AckState (Continued)

If AckState has... And... Message Displayed is...
02 July 99 Appendix A, ECXpert Database Schema 351

Alphabetical Listing of Tables
Alphabetical Listing of Tables
The tables in this appendix are in order by functional groupings. When you
know the name of a particular table, you can use the alphabetical listing below
to locate it quickly, without reference to the functional groupings.

otherwise, if
acknowledgment
Overdue Date >
current date

ASok has been added
to AckState

Generated (OK)

ASerror has been
added to AckState

Generated (Error)

ASreject has been
added to AckState

Generated (Reject)

ASpreject has been
added to AckState

Generated (Partial) Reject

otherwise, if
acknowledgment
Overdue Date <=
current date

ASok has been added
to AckState

Send-Overdue (OK)

ASerror has been
added to AckState

Send-Overdue (Error)

ASreject has been
added to AckState

Send-Overdue (Reject)

ASpreject has been
added to AckState

Send-Overdue (Partial) Reject

Table A.1 Messages displayed for various values of AckState (Continued)

If AckState has... And... Message Displayed is...

Table Name
Functional
Grouping Contents

Page
No.

BlobInfo System Information about blobs 362

Certificates Keys Certificate information 375

CertTypeInfo Keys Certificate information for UI display. 377

CRL Keys Certificate revocation list 376

DTServices System Service list definitions 360

EventLog Tracking Log of processing events 398
352 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Alphabetical Listing of Tables
Job System Information about scheduled jobs 357

KeyPairs Keys Public/private key pair information 378

MBAddresses Membership Member trading addresses 365

MsgFormats System Text strings for EventLog 400

MDNInfo Tracking Message Disposition Notification infor-
mation

396

MsgFormats Tracking Text strings for EventLog 400

Oftp Tracking OFTP EERP reconciliation information 397

Partnerships Partnerships Partnership definitions 366

PNCard Partnerships Mercator card information 371

PNDocs Partnerships Partnership document definitions 368

PNGroup Partnerships Partnership group definitions 372

PNStd Partnerships EDI standards for partnerships 373

Services System Service definitions 359

Tracking Tracking Basic information for submission units
(same tracking ID)

379

TrkDoc Tracking Document-level information 388

TrkDocDetails Tracking Document card-level information 394

TrkGroup Tracking Group-level information 386

TrkIntchg Tracking Interchange-level information 383

TrkSegment Tracking Document segment-level information 394

UniqueKeys System Control information for system-generated
unique keys

361

Versions System Information about product and database
schema versions

359

Table Name
Functional
Grouping Contents

Page
No.
02 July 99 Appendix A, ECXpert Database Schema 353

Schema Overview
Schema Overview
Figure A.1 shows the relationship between the membership, partnership,
services, and key-related tables in the ECXpert database schema.
354 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Schema Overview
Figure A.1 Diagram of database schema for membership, partnerships, services, and certificates

Partnership
Documents
PNDocs

Member
Information
Members

Services
Services

Partnership
Information

Partnerships

Group Tracking
PNGroup

Partnership
EDI Standards

PNStd

Certificate
Information

Certificates

Member
Addresses

MBAddresses

Service Lists
DTServices

Mercator Card
Information

PNCard

Partnership-related tables

Certificate-related tables

Member-related tables Service-related tables

Public/Private
Key Pairs
KeyPairs

Certificate
Revocation List

CRL

Legend:

Zero, one, or more

One or more

Exactly one

Zero or one

Non-key column used by ‘to’ table

P

Z

1

1

Certificate
Type Info.

CertTypeInfo
02 July 99 Appendix A, ECXpert Database Schema 355

Schema Overview
Figure A.2 shows the relationship between the tracking-related tables in the
ECXpert database schema. It also shows other tables in the ECXpert database
schema.

Figure A.2 Diagram of database schema for tracking and other tables

Unique Keys
UniqueKeys

Submission
Unit Tracking

Tracking

Document
Detail Tracking
TrkDocDetails

Interchange
Tracking

TrkIntchg

Document
Tracking
TrkDoc

Event Log
EventLog

Tracking-related tablesOther tables

P

Legend:

Zero, one, or more

One or more

Exactly one

Zero or one

Non-key column used by ‘to’ table

P

Z

1

Blob
Information
BlobInfo

Msg. Disp.
Notification
MDNInfo

Group Tracking
TrkGroup

Scheduled Job
Information

Job

Version
Information
Versions

Segment
Tracking

TrkSegment

P

OFTP EERP
Reconciliation

Oftp
356 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 System-wide Tables
System-wide Tables
The system-wide group of tables store information that is used throughout the
ECXpert System.

Job

The Job table stores information about scheduled jobs.

Table A.1 Job

 Name Req Type (Len) Description

JBIdP Y varchar2(60) Unique ID of scheduled job

JBDescription varchar2(255) Description of scheduled job

JBExecType integer Type of scheduled job (e.g. script,
daemon, etc.)

JBExecName varchar2(60) Pathname to an executable or a
script, or the section name of an
ECXpert server

JBExecArgs long Arguments passed to scheduled job

JBExecCfgFile varchar2(60) Used internally for daemon

JBExecPktId integer Used internally for daemon

JBCriterionId integer Blob ID for job running criteria

JBBlkoutId integer Blob ID for blackout criteria

JBRepeatFrequency integer Seconds between each time the job
is to be run

JBRunTotal integer Total number of times job is to be
run

JBIteration integer
(default 0)

Current iteration of the scheduled
job
02 July 99 Appendix A, ECXpert Database Schema 357

System-wide Tables
P Primary key

JBState integer
(default 0)

Current state of the scheduled job.
Valid states are:
0 - Job is submitted
1 - Job is waiting for the evaluation
of its criteria
2 - Job is ready to run
3 - Job is running
4 - The previous run is done
5 - Job is all done
6 - Job is held (suspended) by user
7 - Job is aborted due to non-recov-
erable error

JBLastRunRetCode integer Return code from last iteration of
scheduled job

JBLastRunErrno integer Error number from last iteration of
scheduled job

JBLastRunErrMsg varchar2(255) Error message from last iteration of
scheduled job

JBLastRunTime date Starting time of last iteration of
scheduled job

JBPrevEvalTime date Time of most recent evaluation of
criteria

JBNextEvalTime date Time of next evaluation of criteria

JBLogLevel integer Indicates logging level (e.g. warn-
ing, error, etc.
Valid logging levels are:
Lower than 10 - informational
10 - 20 - warning (’(’ means
exclude while ’]’ means include)
20 - 30 - error
Higher than 30 - no logging

JBModByGroup varchar2(60) ID of group modified by

JBModByUser varchar2(60) ID of user modified by

JBModDt date Modification date. Default: system
date.

Table A.1 Job

 Name Req Type (Len) Description
358 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 System-wide Tables
Versions

The Versions table stores information about the current version of ECXpert and
the current version of the database schema.

P Primary key: OFFileName + OFTimeStamp + OFDateStamp

Services

The Services table stores definitions of individual services that can be combined
into service lists in the DTServices table.

Table A.2 Versions

 Name Req Type (Len) Description

Product varchar2(30) Product name (ECXpert).

ProductVersion varchar2(20) Version number of the product

SchemaVersion varchar2(20) Version number of the database
schema

MBModDt date Modification date

Table A.3 Services

 Name Req Type (Len) Description

SVRId P Y integer Service ID

SVRName varchar2(60) Service name

SVRType integer Service type. Valid values:
0 = STunknown
1 = STinternal (ECXpert internal
service, e.g. parse, xlat)
2 = STscript (ECXpert external
script file)
3 = STexe (ECXpert external exe-
cutable file)
4 = STdll (function in a shared
library, e.g. DLL)

SVRPathName varchar2(255) Path name to service code file

SVREntryName varchar2(60) Entry name
02 July 99 Appendix A, ECXpert Database Schema 359

System-wide Tables
P Primary key

DTServices

The DTServices table stores definitions of service lists, built from individual
services stored in the Services table.

SVRMaxThread integer Maximum number of threads

SVRParam varchar2(255) Service description

SVRObjPerm integer Object permission

SVRModByGroup varchar2(60) ID of group modified by

SVRModByUser varchar2(60) ID of user modified by

SVRModDt date Modification date. Default: system
date.

Table A.4 DTServices

 Name Req Type (Len) Description

DTSServiceListName P Y varchar2(60) Service list name

DTSSeqNum P, U Y integer Sequence number

DTSSchedType N Integer Indicates whether service list is
scheduled

DTSSndrMBName U, F Y varchar2(60) Sending member name

DTSRcvrMBName U, F Y varchar2(60) Receiving member name

DTSTypeName U, F Y varchar2(60) Service file type name OR service
data object type name

DTSSVRId F integer Service ID

DTSSVRName varchar2(60) Service name

DTSServiceParams varchar2(255) Service parameters

DTSErrorHandler varchar2(60) Name of user-specified service for
error handler

Table A.3 Services (Continued)

 Name Req Type (Len) Description
360 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 System-wide Tables
P Primary key: DTSServiceListName + DTSSeqNum
U Unique key: DTSSeqNum + DTSSndrMBName + DTSRcvrMBName + DTSTypeName
F Foreign keys: DTSTypeName into Services (SVRName);

DTSSVRId into Services (SVRId);
DTSSndrMBName and DTSRcvrMBName into Members (MBName);

UniqueKeys

The UniqueKeys table stores control information for all unique keys that are
generated by the ECXpert System.

P Primary key

DTSDesc varchar2(255) Service description

DTSObjPerm integer Object permission

DTSModByGroup varchar2(60) ID of group modified by

DTSModByUser varchar2(60) ID of user modified by

DTSModDt date Modification date. Default: system
date.

Table A.5 UniqueKeys

 Name Req Type (Len) Description

UKName P Y varchar2(60) Unique key name

UKLastValue integer Last value assigned to this key

UKModDt date Modification date. Default: system
date.

Table A.4 DTServices (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 361

Membership-related Tables
BlobInfo

The BlobInfo table stores blobs used by the ECXpert System.

P Primary key

Membership-related Tables
The membership-related group of tables store information related to members
in the ECXpert System.

Table A.6 BlobInfo

 Name Req Type (Len) Description

BLOBId P Y integer Blob ID

BLOBType integer Kind of blob. Valid values are:
0 = BTunknown
1 = BTcertificate
2 = BTsubject
3 = BTtrackfile
4 = BTjob

BLOBValue long raw Contents of blob

BLOBValueLen integer Length of contents

BLOBObjPerm integer Object permission

BLOBModByGroup varchar2(60) ID of group modified by

BLOBModByUser varchar2(60) ID of user modified by

BLOBModDt date Modification date. Default: system
date.
362 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Membership-related Tables
Members

The Members table stores the basic definitions of individual members within
the ECXpert System.

Table A.7 Members

 Name Req Type (Len) Description

MBName P Y varchar2(60) Member name.

MBType integer Member type.
LDAP name: BusinessCategory
Valid values:
0 = MBTunknown
1 = MBTsysAdmin
2 = MBTmembershipAdmin (not
used in release 3.0)
3 = MBTgroupAdmin (not used in
release 3.0)
4 = MBTinternalMember (not used
in release 3.0)
5 = MBTtradingPartner (external
member)

MBParentName F Y varchar2(60) Member parent name

MBIsGroup integer Is member a group?

MBActive integer Is member active? LDAP name:
EmployeeType, bit 0x01

MBPassword varchar2(255) Member password

MBPKPwd varchar2(255) (internal use)
LDAP name: SeeAlso

MBInfoSource varchar2(255) Not used in release 3.0
LDAP name: LabeledURI

MBTrusted integer Is member trusted? LDAP name:
EmployeeType, bit 0x02

MBOftpFlag Integer Not used in release 3.0
Indicates whether an ECX member
is allowed to change passward at
beginning of OFTP session.
02 July 99 Appendix A, ECXpert Database Schema 363

Membership-related Tables
P Primary key

MBReadSpan Integer The number of days back that
TradingXpert shows documents to
this member in TradingXpert
inbound and outbound document
lists.

MBContactName varchar2(60) Member contact’s name
LDAP name: FullName

MBContactAddress1 varchar2(60) Contact’s address line 1
LDAP name: Address, bytes 0-59

MBContactAddress2 varchar2(60) Contact’s address line 2
LDAP name: Address, bytes 60-119

MBContactCity varchar2(60) Contact’s city
LDAP name: Locality

MBContactState varchar2(60) Contact’s state or province
LDAP name: State

MBContactZip varchar2(60) Contact’s zip or postal code
LDAP name: PostalCode

MBContactCountry varchar2(60) Contact’s country
LDAP name: Address, bytes 120-
179

MBContactPhone varchar2(60) Contact’s phone number
LDAP name: PhoneNo

MBContactFax varchar2(60) Contact’s fax number
LDAP name: Fax

MBContactDesc varchar2(255) Contact’s description
LDAP name: Description

MBContactEmailId varchar2(255) Contact’s email. LDAP name: Email

MBObjPerm integer Object permission

MBModByGroup varchar2(60) ID of group modified by

MBModByUser varchar2(60) ID of user modified by

MBModDt date Modification date. Default: system
date.

Table A.7 Members (Continued)

 Name Req Type (Len) Description
364 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Membership-related Tables
F Foreign key: MBParentName into Members (MBName)

MBAddresses

The MBAddresses table stores trading addresses for members. Each member
defined in Members table may have multiple trading addresses stored in
MBAddresses table.

P Primary key: MBAQual + MBAQualId
F Foreign keys: MBAName into Members (MBName)
U Unique key: MBAQual + MBAQualId

Table A.8 MBAddresses

 Name Req Type (Len) Description

MBAName F Y varchar2(60) Member name

MBAQual P, U Y varchar2(60) Qualifier for trading address

MBAQualId P, U Y varchar2(60) Main trading address

MBAObjPerm integer Object permission

MBAModByGroup varchar2(60) ID of group modified by

MBAModByUser varchar2(60) ID of user modified by

MBAModDt date Modification date. Default: system
date.
02 July 99 Appendix A, ECXpert Database Schema 365

Partnership-related Tables
Partnership-related Tables
The partnership-related group of tables store information on trading partner-
ships.

Partnerships

The Partnerships table stores the basic information defining a trading
partnership.

Table A.9 Partnerships

 Name Req Type (Len) Description

PNId P Y integer Partnership ID

PNSndrMBName F varchar2(60) Sending member name

PNSndrQual U, F Y varchar2(60) Qualifier for sending member’s
trading address

PNSndrQualId U, F Y varchar2(60) Sending member’s main trading
address

PNRcvrMBName F varchar2(60) Receiving member name

PNRcvrQual U, F Y varchar2(60) Qualifier for receiving member’s
trading address

PNRcvrQualId U, F Y varchar2(60) Receiving member’s main trading
address

PNActive integer Is partnership active?

PNSndrCertType integer Certificate type. Valid values:
0 = CTUnknown
1 = CTSelf
2 = CTVerisignC3
3 = CTVerisignC2
4 = CTVerisignC1
5+ Other CA root(s) user imports
366 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Partnership-related Tables
P Primary key
U Unique key: PNSndrQual + PNSndrQualId + PNRcvrQual + PNRcvrQualId
F Foreign keys: PNSndrMBName into Members (MBName); PNSndrQual into MBAddresses (MBAQual);

PNSndrQualId into MBAddresses (MBAQualId); PNRcvrMBName into Members (MBName);
PNRcvrQual into MBAddresses (MBAQual); PNRcvrQualId into MBAddresses (MBAQualId)

PNRcvrCertType integer Certificate type. Valid values:
0 = CTUnknown
1 = CTSelf
2 = CTVerisignC3
3 = CTVerisignC2
4 = CTVerisignC1
5+ Other CA root(s) user imports

PNSecurity integer SMTP security. Valid values:
0 = Plain MIME (send as base64
encoding only)
1 = Encrypted (encrypted with
receiver’s public key)
2 = Signed (signed with sender’s
private key)
3 = SignedAndEncrypted (signed
first, then encrypted)

PNGenOptEnv integer Enveloping Options:
0 = No UNA, No UNG
1 = UNA only
2 = UNG only
3 = UNA and UNG

PNGenIntgAckFlags integer Generate interchange acknowledg-
ments flags (internal use)

PNIntgAckWait integer The number of minutes to wait
before the acknowledgment
becomes overdue. Default: 525600.

PNDesc varchar2(255) Partnership description

PNObjPerm integer Object permission

PNModByGroup varchar2(60) ID of group modified by

PNModByUser varchar2(60) ID of user modified by

PNModDt date Modification date. Default: system
date.

Table A.9 Partnerships (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 367

Partnership-related Tables
PNDocs

The PNDocs table stores partnership document information.

Table A.10 PNDocs

 Name Req Type (Len) Description

PDPGId P, F Y integer Partnership ID

PDDocType P Y varchar2(60) Document type

PDActive integer 1 if active

PDPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow

PDAppDOTName varchar2(60) Application data object type name

PDMapName varchar2(60) Map file name

PDMapDirection integer Translation type. Valid values:
0 = XLTunknown
1= XLTinbound (EDI-to-Applica-
tion)
2 = XLToutbound (Application-to-
EDI)
3 = XLTedi2edi (EDI-to-EDI)
4 = XLTapp2app (Application-to-
Application)
5 = XLTnoxlat (None; pass-through
mode)

PDMapComment-
SegId

varchar2 (8) The segment ID used as “comment”
type in the Mercator map. Default
is NTE.

PDAckExpected integer Is functional acknowledgment
expected?

PDAckWait integer The number of minutes to wait
before the acknowledgment
becomes overdue. Default:
5259600.

PDLastCtrlNum varchar2(60) Last control number generated
368 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Partnership-related Tables
PDLock integer (internal use)

PD1stXportType varchar2(60) Primary transport protocol. Valid
values include:
“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)
“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

PD1stXportParam long Primary transport protocol parame-
ter

PD2ndXportType varchar2(60) Alternate transport protocol. Valid
values include:
“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)
“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

PD2ndXportParam varchar2(255) Alternate transport protocol param-
eter

PDSendType integer Immediate or scheduled

PDDeleteWait integer Retention period (days) before
delete

PDArchiveWait integer Retention period (days) before
archiving (not used in release 3.0)

Table A.10 PNDocs (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 369

Partnership-related Tables
P Primary key: PDPGId + PDDocType
F Foreign keys: PDPGId into PNStd (PSId)

PDPreEnveloped integer Is data pre-enveloped? Valid values:
0 = PEunknown
1 = PEenveloped (bundle preserves
all envelopes)
2 = PEnonenveloped (bundle gen-
erates and/or replaces all enve-
lopes)
3 = PEpreenvelopedEDI(not used)
4 = PEGetCtrlNo (Bundle only sup-
plies the control number and pre-
serves everything else in envelope)

5 = PEPreserveCtrlNo (Bundle only
preserves the envelope control
number)

PNPreCommSVRId integer Service ID of service to execute
before sending to a communica-
tions agent

PDDesc varchar2(255) Document description

PDObjPerm integer Object permission

PDModByGroup varchar2(60) ID of group modified by

PDModByUser varchar2(60) ID of user modified by

PDModDt date Modification date. Default: system
date.

Table A.10 PNDocs (Continued)

 Name Req Type (Len) Description
370 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Partnership-related Tables
PNCard

The PNCard table stores information about the Mercator input and output cards
associated with a partnership document.

P Primary key: PDDPGId + PDDDocType + PDDCardNum
F Foreign keys: PDDPSId into PNDocs (?); PDDDocType into PNDocs(?)

Table A.11 PNCard

 Name Req Type (Len) Description

PDDPGId P,F Y integer Partnership ID

PDDDocType P,F Y varchar2(60) Document type

PDDCardNum P Y integer Card number

PDDSndrMBName varchar2(60) Sending member name

PDDRcvrMBName varchar2(60) Receiving member name

PDDCardDocType varchar2(60) Card document type

PDDObjPerm integer Object permission

PDDModByGroup varchar2(60) ID of group modified by

PDDModByUser varchar2(60) ID of user modified by

PDDModDt date Modification date. Default: system
date.
02 July 99 Appendix A, ECXpert Database Schema 371

Partnership-related Tables
PNGroup

The PNGroup table stores information on expected document groups,
especially of the GS/GE and UNG/UNE segments, of incoming files for a given
partnership.

P Primary key: PGPSId + PGGroupType + PGSndrQual + PGSndrAppCode + PGRcvrQual + PGRcvrApp-
Code
F Foreign key: PGPSId into PNStd (PSId)

Table A.12 PNGroup

 Name Req Type (Len) Description

PGId Y integer Unique ID number of partnership
group.

PGPSId P, F Y integer Standard associated with partner-
ship group.

PGGroupType P Y varchar2(60) Partnership group

PGSndrQual P Y varchar2(60) Qualifier for the application sender
code. Used only in EDIFACT.

PGSndrAppCode Y varchar2(60) Application sender code.

PGRcvrQual Y varchar2(60) Qualifier for the application
receiver code.

PGRcvrAppCode Y varchar2(60) Application receiver code.

PGLastGroupCtrlNum varchar2(60) Last group control number gener-
ated

PGLockGroup integer (internal use)

PGGenDocAck integer Generate document acknowledg-
ments flags (internal use)

PGGrpAckWait integer The number of minutes to wait
before the acknowledgment
becomes overdue. Default: 525600.

PGObjPerm integer Object permission

PGModByGroup varchar2(60) ID of group modified by

PGModByUser varchar2(60) ID of user modified by

PGModDt date Modification date. Default: system
date.
372 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Partnership-related Tables
PNStd

The PNStd table stores EDI standard information for a partnership defined in
the Partnership table.

Table A.13 PNStd

 Name Req Type (Len) Description

PSId P Y integer Standards ID

PSPNId U, F Y integer Partnership ID

PSStandard U Y varchar2(60) EDI standard

PSVersion U Y varchar2(60) EDI standard version number

PSRelease U Y varchar2(60) EDI standard release number

PSLastIntgCtrlNum varchar2(60) Last interchange control number
generated

PSLockIntg integer (internal use)

PSTestProdFlag integer Test vs. production data flag. Valid
values:
0 = TPFunknown
1 = TPFproduction (production
data)
2 = TPFtest (test data)

PSSegTerm varchar2(6) Segment terminator character

PSElmtSep varchar2(6) Data element separator character

PSSubElmtSep varchar2(6) Data sub-element separator charac-
ter

PSDecPtChar varchar2(6) Decimal point character

PSRelChar varchar2(6) Release character

PSOutStandard varchar2(60) Interchange standard user wishes
to appear in bundled EDI docu-
ments

PSOutVersion varchar2(60) Interchange version user wishes to
appear in bundled EDI documents

PSOutRelease varchar2(60) Interchange release user wishes to
appear in bundled EDI documents
02 July 99 Appendix A, ECXpert Database Schema 373

Partnership-related Tables
P Primary key: PSId
F Foreign key: PSPNId into Partnerships (PNId)
U Unique key: PSPNId + PSStandard + PSVersion + PSRelease

PSObjPerm integer Object permission

PSModByGroup varchar2(60) ID of group modified by

PSModByUser varchar2(60) ID of user modified by

PSModDt date Modification date. Default: system
date.

Table A.13 PNStd (Continued)

 Name Req Type (Len) Description
374 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Certificate-related Tables
Certificate-related Tables
The certificate-related group of tables store information supporting public key
encryption in the ECXpert System.

Certificates

The Certificates table stores information on certificates.

Table A.14 Certificates

 Name Req Type (Len) Description

CRTDigest P, U Y varchar2(60) Certificate issuer name and serial
number digest

CRTCertType P, U Y integer Certificate type. Valid values:
0 = CTUnknown
1 = CTSelf
2 = CTVerisignC3
3 = CTVerisignC2
4 = CTVerisignC1
5+ Other CA root(s) user imports

CRTCertUsage Y integer Indicates how the certificate is
being used (i.e. to digitally sign,
encrypt, or both)

CRTSubjectDigest Y varchar2(60) Subject named digest

CRTPublicKeyDigest F Y varchar2(30) Public key digest

CRTBlobId integer (internal use)

CRTSubjectBlobId integer (internal use)

CRTExpireDt Y integer Certificate expiration date

CRTName varchar2(60) Name of issuing certificate author-
ity

CRTIsRoot integer Indicates if certificate is a root cer-
tificate

CRTMBName U, F Y varchar2(60) Member name

CRTMBEmailId varchar2(60) Member’s e-mail address
02 July 99 Appendix A, ECXpert Database Schema 375

Certificate-related Tables
P Primary key: CRTDigest + CRTCertType
F Foreign key: CRTPublicKeyDigest into KeyPairs (KPDigest); CRTMBName into Members (MBName)
U Unique key: CRTCertType + CRTDigest + CRTMBName

CRL

The CRL table stores the certificate revocation list.

P Primary key

CRTDesc varchar2(255) Certificate description

CRTObjPerm integer Object permission

CRTModByGroup varchar2(60) ID of group modified by

CRTModByUser varchar2(60) ID of user modified by

CRTModDt date Modification date. Default: system
date.

Table A.15 CRL

 Name Req Type (Len) Description

CRLIssuerDigest P Y varchar2(60) Certificate issuer digest

CRLTime integer Time stamp

CRLValue long raw Certificate revolution list

CRLValueLen integer Length of certificate (bytes)

CRLDesc varchar2(255) Description

CRLObjPerm integer Object permission

CRLModByGroup varchar2(60) ID of group modified by

CRLModByUser varchar2(60) ID of user modified by

CRLModDt date Modification date. Default: system
date.

Table A.14 Certificates (Continued)

 Name Req Type (Len) Description
376 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Certificate-related Tables
CertTypeInfo

The CertTypeInfo table stores information on certificates for display through the
user interface.

P Primary key

Table A.16 CertTypeInfo

 Name Req Type (Len) Description

CTICertType P Y integer Certificate type. Valid values:
0 = CTUnknown
1 = CTSelf
2 = CTVerisignC3
3 = CTVerisignC2
4 = CTVerisignC1
5+ Other CA root(s) user imports

CTICertTypeName Y varchar2(60) Name of certificate authority

CTICertTypeDesc varchar2(60) Certificate authority description

CTIObjPerm integer Object permission

CTIModByGroup varchar2(60) ID of group modified by

CTIModByUser varchar2(60) ID of user modified by

CTIModDt date Modification date. Default: system
date.
02 July 99 Appendix A, ECXpert Database Schema 377

Certificate-related Tables
KeyPairs

The KeyPairs table stores public/private key pair information.

P Primary key
F Foreign key: KPDigest into Certificates (CRTPublicKeyDigest)

Table A.17 KeyPairs

 Name Req Type (Len) Description

KPDigest P, F Y varchar2(30) Public key digest

KPPrivateKey long raw Private key (encrypted)

KPPrivateKeyLen integer Private key length

KPDesc varchar2(255) Key pair description

KPObjPerm integer Object permission

KPModByGroup varchar2(60) ID of group modified by

KPModByUser varchar2(60) ID of user modified by

KPModDt date Modification date. Default: system
date.
378 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
Tracking-related Tables
The tracking-related group of tables supports document tracking in the ECXpert
System.

Tracking

The Tracking table stores information associated with tracking IDs.

Table A.18 Tracking

 Name Req Type (Len) Description

TRKId P Y integer Tracking ID - ECXpert internal
tracking number for the submission
unit

TRKServiceListName varchar2(60) Service list name associated with
tracking ID

TRKDOTName varchar2(60) Data object type name (e.g. the
document type specified in the
partnership)

TRKSndrMBName varchar2(60) Sending member name

TRKRcvrMBName varchar2(60) Receiving member name

TRKCurServiceIdx integer Current service index, , which indi-
cates which service is currently run-
ning: either 1 for submission or the
offset corresponding to the service
in the service list -1

TRKCurServiceName varchar2(60) Current service name

TRKCurServiceParam-
File

varchar2(255) Stores the custom service parame-
ter file name
02 July 99 Appendix A, ECXpert Database Schema 379

Tracking-related Tables
TRKPrimaryState integer Primary tracking state. Valid values:
0 = TSunknown - indicates NULL
value
1 = TSready - indicates service has
yet to be invoked
2 = TSinProgress - indicates service
has been invoked
3 = TSdoneOK - indicates service is
done with no errors
4 = TSdoneBad - indicates service
is done with errors
5 = TSalldoneOK - indicates last
service on service list is done and
TRKState is TSdoneOK
6 = TSbundled - identifies bundle
generated trackings

TRKState integer Tracking state. Valid values:
0 = TSunknown - indicates NULL
value
1 = TSready - indicates service has
yet to be invoked
2 = TSinProgress - indicates service
has been invoked
3 = TSdoneOK - indicates service is
done with no errors
4 = TSdoneBad - indicates service
is done with errors
5 = TSalldoneOK - indicates last
service on service list is done and
TRKState is TSdoneOK
6 = TSbundled - identifies bundle
generated trackings

TRKErrnum integer Tracking error number. Default: 0.

TRKPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow

Table A.18 Tracking (Continued)

 Name Req Type (Len) Description
380 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
TRKCreationDt date Tracking ID creation date. Default:
system date.

TRKLock integer Is Tracking ID locked?

TRKMapDirection integer Translation type. Valid values:
0 = XLTunknown
1= XLTinbound (EDI-to-Applica-
tion)
2 = XLToutbound (Application-to-
EDI)
3 = XLTedi2edi (EDI-to-EDI)
4 = XLTapp2app (Application-to-
Application)
5 = XLTnoxlat (None; pass-through
mode)

TRKXportType varchar2(60) Transport protocol. Valid values
include:
“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)
“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

TRKMDNState integer Message disposition notification
state. Valid values:
0 = MSunknown
1 = MSready (MDN generated and
ready to send)
2 = MSsent (MDN is sent)
3 = MSwaiting (email is sent and is
waiting for an incoming MDN)
4 = MSreconciled (Received MDN
and reconciled it with original
email)

Table A.18 Tracking (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 381

Tracking-related Tables
P Primary key

TRKMDNOverDueDt date The date after which the message
disposition notification becomes
over due. Default: system date +
3652.

TRKExtReference varchar2(60) External reference

TRKExtPathName varchar2(255) External pathname

TRKPartNum integer Current part number

TRKPartTotal integer Part total

TRKPartType integer Attachment or parts

TRKCustomInfo varchar2(255) (internal use)

TRKMisc varchar2(255) (internal use)

TRKFullPathName varchar2(255) Full path name

TRKSize integer Submission Unit file size (bytes)

TRKBlobId integer (internal use)

TRKObjPerm integer Object permission

TRKModByGroup varchar2(60) ID of group modified by

TRKModByUser varchar2(60) ID of user modified by

TRKModDt date Modification date. Default: system
date.

Table A.18 Tracking (Continued)

 Name Req Type (Len) Description
382 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
TrkIntchg

The TrkIntchg table stores information on the interchange level of the EDI
envelope.

Table A.19 TrkIntchg

 Name Req Type (Len) Description

TITrkId P, F Y integer ECXpert internal tracking number
for the submission unit

TIId P Y integer Interchange identifier

TICurServiceIdx integer Current service index

TIState integer Tracking state. Valid values:
0 = TSunknown
1 = TSready
2 = TSinProgress
3 = TSdoneOK
4 = TSdoneBad
5 = TSalldoneOK
6 = TSbundled

TIErrnum integer Interchange error number. Default:
0.

TIParseErrnum integer (internal use)

TIPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow

TIPSId integer Partnership ID

TISndrQual varchar2(60) Sending member qualifier for trad-
ing address

TISndrQualId varchar2(60) Sending member main trading
address

TIRcvrQual varchar2(60) Receiving member qualifier for
trading address

TIRcvrQualId varchar2(60) Receiving member main trading
address
02 July 99 Appendix A, ECXpert Database Schema 383

Tracking-related Tables
TIStandard varchar2(60) EDI standard used

TIVersion varchar2(60) Version number of EDI standard
used

TIRelease varchar2(60) Release number of EDI standard
used

TITestProdFlag integer Test vs. production data flag. Valid
values:
0 = TPFunknown
1 = TPFproduction (production
data)
2 = TPFtest (test data)

TIAckState integer Functional acknowledgment state.
A single value is computed by add-
ing the following component val-
ues as events occur:
0 = ASunknown
1 = ASwaiting
2 = ASok
4 = ASerror
8 = ASreject
16 = ASpreject
32 = ASsent
64 = ASsendFailed
128 = ASreconciled
For detailed breakdown of actual
values and messages displayed, see
“Values of AckState” on page 349.

TIAckOverDueDt date The number of minutes to wait
before the acknowledgment
becomes overdue. Default: system
date + 3652.

TIGenIntgAckFlags integer Generate functional acknowledg-
ment? Valid values:
0 = GAunknown
1 = GAnoack (none)
2 = GAgroup (group level)
3 = GAdoc (document level)

Table A.19 TrkIntchg (Continued)

 Name Req Type (Len) Description
384 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
P Primary key: TITrkId + TIId
F Foreign key: TITrkId into Tracking (TRKId)

TICtrlNum varchar2(60) EDI standard control number,
determined by trading partner rela-
tionship

TIFileName varchar2(255) Submission Unit file name

TICreationDt date Submission Unit file creation date

TISize integer Interchange size (bytes)

TIHdrStartOff integer Interchange header start offset
(bytes)

TIHdrSize integer Interchange header size (bytes)

TITlrStartOff integer Interchange trailer start offset
(bytes)

TITlrSize integer Interchange trailer size (bytes)

TISegTerm varchar2(6) Segment terminator

TIElmtSep varchar2(6) Element separator

TISubElmtSep varchar2(6) Sub-element separator

TIDecPtChar varchar2(6) Decimal point character

TIRelChar varchar2(6) Release character

TIObjPerm integer Object permission

TIModByGroup varchar2(60) ID of group modified by

TIModByUser varchar2(60) ID of user modified by

TIModDt date Modification date. Default: system
date.

Table A.19 TrkIntchg (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 385

Tracking-related Tables
TrkGroup

The TrkGroup table stores information on the group level of the EDI envelope.

Table A.20 TrkGroup

 Name Req Type (Len) Description

TGTrkId P, F Y integer BDG internal tracking number for
the submission unit

TGIntgId P Y integer Interchange identifier

TGId P Y integer Group identifier

TGType varchar2(10) Group document type.

TGCurServiceIdx integer Current service index

TGState integer Tracking state. Valid values:
0 = TSunknown
1 = TSready
2 = TSinProgress
3 = TSdoneOK
4 = TSdoneBad
5 = TSalldoneOK
6 = TSbundled

TGErrnum integer Tracking error number. Default: 0.

TGParseErrnum integer Parse error number. Default: 0.

TGPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow

TGSndrQual varchar2(60) Sending member main trading
address

TGSndrAppCode varchar2(60) Application sender code.

TGRcvrQual varchar2(60) Receiving member main trading
address

TGRcvrAppCode varchar2(60) Application receiver code.

TGStandard varchar2(60) EDI standard used
386 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
TGVersion varchar2(60) Version number of EDI standard
used

TGRelease varchar2(60) EDI standard release number

TGCtrlNum varchar2(60) EDI standard control number,
determined by trading partner rela-
tionship

TGIncludedSets integer The number of transaction sets
(documents) included in the group.

TGAckState integer Functional acknowledgment state.
A single value is computed by add-
ing the following component val-
ues as events occur:
0 = ASunknown
1 = ASwaiting
2 = ASok
4 = ASerror
8 = ASreject
16 = ASpreject
32 = ASsent
64 = ASsendFailed
128 = ASreconciled
For detailed breakdown of actual
values and messages displayed, see
“Values of AckState” on page 349.

TGAckOverDueDt date The number of minutes to wait
before the acknowledgment
becomes overdue. Default: system
date + 3652.

TGCreationDt date Submission Unit file creation date.
Default: system date.

TGSize integer Submission Unit file size

TGHdrStartOff integer Header start offset (bytes)

TGHdrSize integer Header size (bytes)

TGTlrStartOff integer Trailer start offset (bytes)

TGTlrSize integer Trailer size (bytes)

Table A.20 TrkGroup (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 387

Tracking-related Tables
P Primary key: TGTrkId + TGIntgId + TGId
F Foreign key: TGTrkId into Tracking (TRKId); TGIntgId into TrkIngchg (TITrkId)

TrkDoc

The TrkDoc table stores information on the document level of the EDI
envelope.

TGObjPerm integer Object permission

TGModByGroup varchar2(60) ID of group modified by

TGModByUser varchar2(60) ID of user modified by

TGModDt date Modification date. Default: system
date.

Table A.21 TrkDoc

 Name Req Type (Len) Description

TDId P Y varchar(30) Document-level internal tracking
ID

TDTrkId F integer Tracking ID - internal tracking
number for the submission unit

TDIntgId integer Interchange identifier

TDGrpId integer Group identifier

TDDocId integer Document identifier

TDCurServiceIdx integer Current service index

TDCurServiceName varchar2(60) Current service name

TDState integer Tracking state. Valid values:
0 = TSunknown
1 = TSready
2 = TSinProgress
3 = TSdoneOK
4 = TSdoneBad
5 = TSalldoneOK
6 = TSbundled

Table A.20 TrkGroup (Continued)

 Name Req Type (Len) Description
388 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
TDErrnum integer Tracking error number. Default: 0.

TDParseErrnum integer Parse error number. Default: 0.

TDXlatState integer Translation state

TDXlatErrnum integer Translation error number. Default:
0.

TDPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow

TDStartXlatDt date Date translation started. Default:
system date.

TDEndXlatDt date Date translation ended. Default:
system date.

TDLock integer (internal use)

TDPSId integer Partnership standard ID

TDDocType varchar2(60) Document type

TDTestProdFlag integer Test vs. production data flag. Valid
values:
0 = TPFunknown
1 = TPFproduction (production
data)
2 = TPFtest (test data)

TDSndrMBName varchar2(60) Sender member’s name

TDSndrQual varchar2(60) Sender EDI qualifier

TDSndrQualId varchar2(60) Sender EDI qualifier ID

TDRcvrMBName varchar2(60) Receiver member’s name

TDRcvrQual varchar2(60) Receiver EDI qualifier

TDRcvrQualId varchar2(60) Receiver EDI qualifier ID

TDSndrAppQual varchar2(60) Qualifier for the application sender
code. Used only in EDIFACT.

TDSndrAppCode varchar2(60) Application sender code.

Table A.21 TrkDoc (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 389

Tracking-related Tables
TDRcvrAppQual varchar2(60) Qualifier for the application
receiver code.

TDRcvrAppCode varchar2(60) Application receiver code. Pro-
vides for defining trading partner-
ships at the functional group level.

TDMapName varchar2(60) Name of map for translation

TDStandard varchar2(60) EDI standard for translation

TDVersion varchar2(60) Version of EDI standard

TDRelease varchar2(60) Release of EDI standard

TDMapDirection integer Translation type. Valid values:
0 = XLTunknown
1= XLTinbound (EDI-to-Applica-
tion)
2 = XLToutbound (Application-to-
EDI)
3 = XLTedi2edi (EDI-to-EDI)
4 = XLTapp2app (Application-to-
Application)
5 = XLTnoxlat (None; pass-through
mode)

TD1stXportType varchar2(60) Primary transport protocol. Valid
values include:
“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)
“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

TD1stXportParam long Transport parameter

Table A.21 TrkDoc (Continued)

 Name Req Type (Len) Description
390 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
TD2ndXportType varchar2(60) Alternate transport protocol. Valid
values include:
“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)
“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

TD2ndXportParam varchar2(255) Transport parameter

TDSendType integer Sender type: immediate or sched-
uled

TDSourceDocId char(30) Source document ID

TDAckDocId char(30) Functional acknowledgment docu-
ment ID

TDAckState integer Functional acknowledgment state.
A single value is computed by add-
ing the following component val-
ues as events occur:
0 = ASunknown
1 = ASwaiting
2 = ASok
4 = ASerror
8 = ASreject
16 = ASpreject
32 = ASsent
64 = ASsendFailed
128 = ASreconciled
For detailed breakdown of actual
values and messages displayed, see
“Values of AckState” on page 349.

Table A.21 TrkDoc (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 391

Tracking-related Tables
TDAckOverDueDt date The number of minutes to wait
before the acknowledgment
becomes overdue. Default: system
date + 3652.

TDCreationDt date Document creation date. Default:
system date + 3652.

TDCtrlNum varchar2(60) Control number

TDMapRestrictFlags integer Map restriction flags

TDFileName varchar2(255) Map file name

TDSize integer Document size (bytes)

TDHdrStartOff integer Document header start offset
(bytes)

TDHdrSize integer Document header size (bytes)

TDTlrStartOff integer Document trailer start offset (bytes)

TDTlrSize integer Document trailer size (bytes)

TDUserLink1Name varchar2(60) User link 1 name

TDUserLink1Value varchar2(60) User link 1 value

TDUserLink2Name varchar2(60) User link 2 name

TDUserLink2Value varchar2(60) User link 2 value

TDArchiveWait integer Wait time to archive

TDDeleteWait integer Wait time to delete

TDDataState integer Data state. Valid values:
0 = DSunknown
1 = DSreadyForPurge
2 = DSpurged
3 = DSreadyForArchive
4 = DSarchived
5 = DSreadyForRestore
6 = DSrestored

Table A.21 TrkDoc (Continued)

 Name Req Type (Len) Description
392 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
P Primary key
F Foreign key: TDTrkId into Tracking (TRKId)

TDPreEnveloped integer Is data pre-enveloped? Valid values:
0 = PEunknown
1 = PEenveloped (bundle preserves
all envelopes)
2 = PEnonenveloped (bundle gen-
erates and/or replaces all enve-
lopes)
3 = PEpreenvelopedEDI(not used)
4 = PEGetCtrlNo (Bundle only sup-
plies the control number and pre-
serves everything else in envelope)
5 = PEPreserveCtrlNo (Bundle only
preserves the envelope control
number)
6 = PEFill (Bundle fills in the miss-
ing envelope information - not
used in this release)

TDBundleState integer Bundle state. Valid values:
0 = BSunknown
1 = BSreadyForBundle
2 = BSbundleed
3 = BSdeliveredToComm
4 = BSsecondarySubmitted
5 = BSsecondaryError

TDBundleTrkId integer Bundle tracking ID

TDPreCommSVRId integer Service ID of service to execute
before sending to a communica-
tions agent

TDObjPerm integer Object permission

TDModByGroup varchar2(60) ID of group modified by

TDModByUser varchar2(60) ID of user modified by

TDModDt date Modification date. Default: system
date.

Table A.21 TrkDoc (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 393

Tracking-related Tables
TrkSegment

The TrkSegment table stores document segment-level information.

TrkDocDetails

The TrkDocDetails table stores document card-level information.

Table A.22 TrkSegment

Name Req Type (Len) Description

TSDocId F Y varchar (30) Document-level internal tracking ID

TSSegmentId Y varchar (30) ID of segment within document

TSSegmentPosition integer Segment sequence number within the
document

TSSegmentErrnum integer EDI error code. Valid values:
2 = unexpected segment
3 = mandatory segment missing
8 = segment has data elements in
error

TSElementPosition integer Data element sequence number
within the segment (only used when
error is in data element)

TSElementCopy varchar2 (128) Copy of data elment data (only used
when error is in data element)

Table A.23 TrkDocDetails

 Name Req Type (Len) Description

TDDId P, F Y varchar(30) Detail ID

TDDCardNum P Y integer Detail card number

TDDCreationDt date Detail creation date. Default: sys-
tem date.

TDDFullPathName varchar2(255) Full pathname

TDDIOType integer I/O type

TDDXlatFlags integer Translation flags
394 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
P Primary key: TDDId + TDDCardNum
F Foreign key: TDDId into TrkDoc (TDId)
F Foreign key: TSDocId into TrkDoc (TDId)

TDDTrkId integer Tracking ID - internal tracking
number for the submission unit.

TDDIntgId integer Interchange identifier

TDDGrpId integer Group identifier

TDDState integer Tracking state. Valid values:
0 = TSunknown
1 = TSready
2 = TSinProgress
3 = TSdoneOK
4 = TSdoneBad
5 = TSalldoneOK
6 = TSbundled

TDDErrnum integer Tracking error number. Default: 0.

TDDSndrMBName varchar2(60) Sender member’s name

TDDRcvrMBName varchar2(60) Receiver member’s name

TDDDocType varchar2(60) Document type

TDDSubmittedTRKId integer Tracking ID of the submitter

TDDObjPerm integer Object permission

TDDModByGroup varchar2(60) ID of group modified by

TDDModByUser varchar2(60) ID of user modified by

TDDModDt date Modification date

Table A.23 TrkDocDetails (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 395

Tracking-related Tables
MDNInfo

The MDNInfo table stores message disposition notification information used by
the ECXpert System.

P Primary key

Table A.24 MDNInfo

 Name Req Type (Len) Description

MDNId P Y integer Message disposition notification ID

MDNSndrMBName varchar2(60) Sender’s member name

MDNRcvrMBName varchar2(60) Receiver’s member name

MDNReceiveDt varchar2(60) Date received

MDNOrigMsgId varchar2(128) Original message ID

MDNOrigMsgDigest varchar2(60) Original message digest

MDNMicAlg integer (internal use)
MDN digest algorithm

MDNObjPerm integer Object permission

MDNModByGroup varchar2(60) ID of group modified by

MDNModByUser varchar2(60) ID of user modified by

MDNModDt date Modification date. Default: system
date.
396 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
Oftp

The Oftp table stores OFTP EERP (end-to-end-response) reconciliation infor-
mation used by the ECXpert System.

Table A.25 Oftp

 Name Req Type (Len) Description

OFFileName P Y varchar2(255) The Virtual File Dataset Name.
SFIDSN field in the SFID Start File
OFTP command. Maximum length
is 26 characters.

OFTimeStamp P varchar2(16) The Virtual File Time Stamp. The
SFIDTIME field in the SFID Start
File OFTP command. It is exactly 6
characters long, and has the format
HHMMSS.

OFDateStamp P varchar2(16) The Virtual File Date Stamp. The
SFIDDATE field in the SFID Start
File OFTP command. Exactly 6
characters long, and has the format
YYMMDD.

OFTrkId number The tracking ID assigned to the
submitted file by the ECXpert sys-
tem.

OFSndrMBName varchar2(60) The OFTP Sender ID of the file.

OFRcvrMBName varchar2(60) The OFTP Receiver ID of the file.

OFDocType varchar2(60) The Document Type of the submit-
ted file.

OFEERPExpected number Count of the number of EERP’s
expected before this node can
return an EERP to the originator.
Who to return the EERP to is speci-
fied in the corresponding EERP
relationship. This value is incre-
mented whenever a file is sent out-
bound that is a descendant of the
original file.
02 July 99 Appendix A, ECXpert Database Schema 397

Tracking-related Tables
P Primary key

EventLog

The EventLog table stores a log of processing events, including error condi-
tions.

OFEERPReceived number Count of the number of EERP’s
received by this OFTP node for this
particular OFTP file. Incremented
when EERP’s corrsponding to this
unit of work are received by the
ECXpert OFTP server.

OFEERPSchedType number Is the file for scheduled or immedi-
ate transmission?
0 = immediate
1 = scheduled

OFEERPState number Current state of the EERP entry:
0 = AWAITING_FINAL_EERP
1 = READY_TO_SEND
2 = SENT_OK
3 = FAILED_TO_SEND

Table A.26 EventLog

 Name Req Type (Len) Description

ELId P Y integer Event log ID

ELEventId F integer Event ID

ELCategory varchar2(60) Functional area in which event
took place (e.g. bundle, dispatcher,
smtp, etc.)

ELSeverity integer Severity of the event:
0 = unknown
10 = informational
20 = warning
30 = error

ELEventShortMsg varchar2(255) Short message describing event

Table A.25 Oftp

 Name Req Type (Len) Description
398 Netscape ECXpert Site Administrator’s Handbook 02 July 99

 Tracking-related Tables
P Primary key
F Foreign key: ELId into MsgFormats (MFId)

ELTrkId integer Tracking ID associated with event

ELIntgId integer Interchange ID associated with
event if applicable

ELGrpId integer Group ID associated with event if
applicable

ELDocId integer Document ID associated with event
if applicable

ELTDId varchar2(30) Non-numeric document identifier.
Combination of numeric integers
according to following syntax:
TrackingID-InterchangeID-
GroupID-DocID

ELPercolate integer Flag to indicate whether severity of
event log has been percolated to
tracking tables

ELModByGroup varchar2(60) ID of last user to modify the data-
base row. (not used)

ELModByUser varchar2(60) Functional area in which event
took place (e.g. bundle, dispatcher,
smtp, etc.)

ELModDt date Date the row was last modified
Default: system date.

Table A.26 EventLog (Continued)

 Name Req Type (Len) Description
02 July 99 Appendix A, ECXpert Database Schema 399

Tracking-related Tables
MsgFormats

The MsgFormats table stores text strings describing processing events, including
error conditions, that are entered into the EventLog table during processing.

P Primary key

Table A.27 MsgFormats

 Name Req Type (Len) Description

MFId P Y integer Message format ID

MFCategory varchar2(60) Event category

MFSeverity integer Event severity

MFShortMsgFmt varchar2(255) Short message format

MFLongMsgFmt long varchar Long message format

MFObjPerm integer Object permission

MFModByGroup varchar2(60) ID of group modified by

MFModByUser varchar2(60) ID of user modified by

MFModDt date Modification date. Default: system
date.
400 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Index

Symbols
() method

of EcxDocument class 222, 229

A
AckExpected() method

of EcxPartnership class 178
Active() method

of EcxMember class 141
of EcxPartnership class 178

Actuate reports, see reports

Add() method
of EcxAddresses class 161
of EcxMember class 141
of EcxPartnership class 179
of EcxService class 281
of EcxServiceList class 298

AddFile() method
of EcxSubmit class 118

adding members 136
adding partnerships 170
API Interface

list of 53
ArchiveWaitPeriod() method

of EcxPartnership class 180

B
Base64Decode() method

of CXIPInit class 90
Base64Encode() method

of CXIPInit class 91
billing system

database records 24

objects 24
blobinfo table 362

C
CardCount() method

of EcxDocument class 219
CardFlags() method

of EcxDocument class 220, 226
CardIOType() method

of EcxDocument class 220
certificates table 375
certtypeinfo table 377
Change() method

of EcxMember class 142
of EcxPartnership class 180
of EcxService class 282
of EcxServiceList class 298

changing members’ fields 137
class 52
Clear() method

of EcxAddresses class 161
of EcxDocument class 220
of EcxLog class 256
of EcxMember class 142
of EcxPartnership class 181
of EcxService class 282
of EcxServiceList class 299
of EcxTracking class 240

ClearErr() method
of EcxBase class 103

ClearFileList() method
of EcxSubmit class 119

communications services, user-defined 43
component editor, for reports 320
02 July 99 Index 401

Connect() method
of CXIPConnection class 92

connections, for reports 310, 312
ContactAddress1() method

of EcxMember class 143
ContactAddress2() method

of EcxMember class 143
ContactCity() method

of EcxMember class 144
ContactCompany() method

of EcxMember class 144
ContactCountry() method

of EcxMember class 145
ContactEmailId() method

of EcxMember class 145
ContactFax() method

of EcxMember class 146
ContactName() method

of EcxMember class 146
ContactPhone() method

of EcxMember class 147
ContactState() method

of EcxMember class 147
ContactZip() method

of EcxMember class 148
controls, in reports 319
CreateCONTROL() method

of CXxsMSG class 81
CreateINPUT() method

of CXxsMSG class 83
CreateMSG() method

of CXxsMSG class 80
CreateOUTPUT() method

of CXxsMSG class 84
CreatePreDefinedMONITOR() method

of CXxsMSG class 82
CreateRETRIES() method

of CXxsMSG class 81
CreateSTATUS() method

of CXxsMSG class 82

CreateTIMEOUT() method
of CXxsMSG class 81

CreateUsrDefinedMONITOR() method
of CXxsMSG class 82

creating member objects 136
creating partnership objects 170
CreationDate() method

of EcxDocument class 221
of EcxTracking class 241

CRL table 376
custom parameter file 33
custom services 30

calling conventions 30
command line arguments 39
data-specification file 32
language requirements 30
parameter-specification file 31
return conventions 30
writing a custom service 39

CXIP_MSG class
constructor 66
destructor 67

CXIP_MSG class (XML SDK) 66
CXIPConnection class

constructor 92
destructor 92

CXIPConnection class (XML SDK) 91
CXIPInit class

constructor 89
CXIPInit class (XML SDK) 89
CXIPListener class

constructor 94
destructor 94

CXIPListener class (XML SDK) 93
CXSubmit class

constructor 96
destructor 96

CXSubmit class (XML SDK) 96
CXxsDOM class

constructor 85
402 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXxsDOM class (XML SDK) 85
CXxsMSG class

constructor 67
destructor 67, 86, 89

CXxsMSG class (XML SDK) 67

D
data, in reports 319, 342
database access 23
database schema 347

blobinfo table 362
cautions 348
certificates table 375
certtypeinfo table 377
CRL table 376
dtservices table 360
eventlog table 398
job table 357
keypairs table 378
keys-related tables 375
mbaddresses table 365
mdninfo table 396, 397
members table 363
membership-related tables 362
msgformats table 400
overview 354
partnership-related tables 366
partnerships table 366
pncard table 371
pngroup table 372
pnstd table 373
services table 359
system-wide tables 357
tables 352
tracking table 379
tracking-related tables 379
trkdoc table 388
trkdocdetails table 394
trkgroup table 386
trkintg table 383
uniquekeys table 361
versions table 359

data-specification file 32

DataState() method
of EcxDocument class 221
of EcxTracking class 241

DecimalPointCharacter() method
of EcxPartnership class 181

Delete() method
of EcxAddresses class 161
of EcxDocument class 222
of EcxMember class 148
of EcxPartnership class 182
of EcxService class 282
of EcxServiceList class 299
of EcxTracking class 241

DeleteWaitPeriod() method
of EcxPartnership class 182

deleting members 139
deleting partnerships 174
Desc() method

of EcxServiceList class 299
Description() method

of EcxMember class 149
of EcxPartnership class 183

design editor, for reports 311
DocId() method

of EcxDocument class 222
DocLastControlNumber() method

of EcxPartnership class 183
DocLock() method

of EcxPartnership class 184
DocPriority() method

of EcxPartnership class 184
DocType() method

of EcxDocument class 222
of EcxPartnerId class 211
of EcxPartnership class 185
of EcxTracking class 242

DocumentId() method
of EcxDocId class 233

dtservices table 360
dynamic query, in reports 337
02 July 99 Index 403

E
EcxAddresses class

constructor 160
destructor 160
using 158

EcxAddresses class 158
EcxBase class

constructor 103
destructor 103

EcxBase class 102
EcxDocId class

constructor 233
destructor 233

EcxDocId class 231
EcxDocument class

constants and data types 218
constructor 218
destructor 219
using 215

EcxDocument class 214
EcxDocumentId class

constants and data types 103
EcxFtpClient class

class variables 270
constructor 270
destructor 270
using 264

EcxFtpClient class 264, 292
EcxInit class

constructor 109
destructor 109
using 53, 108

EcxInit class 52, 108
EcxLog class

class variables 254
constructor 255
destructor 255
using 253

EcxLog class 252
EcxLogin class

constructor 129

destructor 129
using 128

EcxLogin class 128
EcxMember class

adding members 136
changing members’ fields 137
class variables 140
constructor 140
creating member objects 136
deleting members 139
destructor 140
listing members 138

EcxMember class 134
EcxPartnerId class

constructor 210
destructor 211

EcxPartnerId class 209
EcxPartnership class

adding partnerships 170
class variables 175
constructor 177
creating partnership objects 170
deleting partnerships 174
destructor 177
listing partnerships 171
using 169

EcxPartnership class 166
ECXpert XML SDK 63

directory structure and source files 64
examples 99

EcxService class
class variables 281
constructor 281
destructor 281
using 277

EcxService class 276
EcxServiceList class

class variables 297
constructor 297
destructor 297
using 293

EcxServiceList class 292
404 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxSubmit class
constructor 117
destructor 117
using 114

EcxSubmit class 111
EcxTracking class

class variables 239
constructor 239
destructor 240
using 237

EcxTracking class 236
ELCategory() method

of EcxLog class 256
ELDocID() method

of EcxLog class 256
ElementSeparator() method

of EcxPartnership class 185
ELEventId() method

of EcxLog class 256
ELEventShortMsg() method

of EcxLog class 257
ELGrpId() method

of EcxLog class 257
ELId() method

of EcxLog class 257
ELIntgId() method

of EcxLog class 257
ELSeverity() method

of EcxLog class 258
ELTDId() method

of EcxLog class 258
ELTrkId() method

of EcxLog class 258
EntryName() method

of EcxService class 283
Errmsg() method

of EcxBase class 104
Errnum() method

of EcxBase class 104
ErrorHandler() method

of EcxServiceList class 300

eventlog table 398
examples, XML SDK 99
expression builder, for reports 322

F
figures

NAS/API interaction with ECXpert 52
file, custom parameter 33
FileName() method

of EcxDocument class 222
of EcxTracking class 242

flow, in reports 326
footers, in reports 326
Format() method

of CXxsDOM class 86
frames, in reports 317

G
GenOptEnv() method

of EcxPartnership class 186
Get() method

of EcxDocument class 223
of EcxMember class 149
of EcxPartnership class 186
of EcxService class 283
of EcxServiceList class 300
of EcxTracking class 242

GetCONTROL() method
of CXxsMSG class 71

GetDeliveryMethod() method
of EcxSubmit class 119

GetDocument() method
of CXxsDOM class 87

GetDTD() method
of CXxsDOM class 87

GetEcxIniFileName() method
of EcxSubmit class 119

GetErrors() method
of CXxsDOM class 87
02 July 99 Index 405

GetFirstListEntry() method
of EcxFtpClient class 271

GetINPUT() method
of CXxsMSG class 72

GetListCount() method
of EcxFtpClient class 271

GetMapName() method
of EcxSubmit class 120

GetMONITOR() method
of CXxsMSG class 71

GetMSGTYPE() method
of CXxsMSG class 68

GetNextListEntry() method
of EcxFtpClient class 271

GetNextTrackingID() method
of EcxSubmit class 121

GetObjectAttribute() method
of CXxsDOM class 88

GetObjectData() method
of CXxsDOM class 88

GetObjectName() method
of CXxsDOM class 88

GetOUTPUT() method
of CXxsMSG class 74

GetPassword() method
of EcxSubmit class 121

GetPredefinedMONITOR() method
of CXxsMSG class 71

GetRECEIVER() method
of CXxsMSG class 70

GetRecipient() method
of EcxSubmit class 122

GetReplyCode() method
of EcxFtpClient class 272

GetReplyMsg() method
of EcxFtpClient class 272

GetRETRIES() method
of CXxsMSG class 69

GetSENDER() method
of CXxsMSG class 69

GetSender() method
of EcxSubmit class 122

GetSERVICE() method
of CXxsMSG class 68

GetSSTATUS() method
of CXxsMSG class 69

GetTIMEOUT() method
of CXxsMSG class 68

GetTIMESTAMP() method
of CXxsMSG class 70

GetUsrDefinedMONITOR() method
of CXxsMSG class 72

GroupGenerateDocAck() method
of EcxPartnership class 187

GroupId() method
of EcxDocId class 233

GroupLastControlNumber() method
of EcxPartnership class 187

GroupLock() method
of EcxPartnership class 188

groups, in reports 338
GroupType() method

of EcxPartnership class 188

H
headers, in reports 326

I
Id() method

of EcxService class 283
IEcxSubmit

list of methods for 55
sample code for 56

Init() method
of CXIPInit class 90
of CXIPListener class 94
of EcxFtpClient class 272

IntchngAckWaitPeriod() method
of EcxPartnership class 188
406 Netscape ECXpert Site Administrator’s Handbook 02 July 99

IntchngGenerateAck() method
of EcxPartnership class 189

IntchngLastControlNumber() method
of EcxPartnership class 189

IntchngLock() method
of EcxPartnership class 190

InterchangeId() method
of EcxDocId class 234

interface 52
IsGroup() method

of EcxMember class 150
IsReplyGood() method

of EcxFtpClient class 273

J
Java interfaces 52
JavaScript

examples 53
interface 52

job table 357
joins, in reports 334

K
keypairs table 378
keys-related tables 375

L
layout pane, for reports 311
layout, for reports 317
List() method

of EcxAddresses class 162
of EcxDocument class 223
of EcxMember class 150
of EcxPartnership class 190
of EcxService class 284
of EcxServiceList class 300

listing members 138
listing partnerships 171

LogEvent() method
of EcxLog class 259

Logout method
of EcxLogin class 130

M
MapDirection() method

of EcxPartnership class 208
MapName() method

of EcxPartnership class 191
MaxThread() method

of EcxService class 284
mbaddresses table 365
mdninfo table 396, 397
Member() method

of EcxAddresses class 162
members table 363
membership-related tables 362
MemberType 130
MemberType method

of EcxLogin class 130
methods 52
ModByGroup() method

of EcxMember class 151
of EcxService class 284
of EcxServiceList class 301

ModByUser() method
of EcxMember class 151
of EcxService class 285
of EcxServiceList class 301

ModDt() method
of EcxMember class 151
of EcxService class 285
of EcxServiceList class 301

ModifyDate() method
of EcxDocument class 224
of EcxTracking class 244

More() method
of EcxAddresses class 162
of EcxDocument class 225
02 July 99 Index 407

of EcxLog class 259
of EcxMember class 151
of EcxPartnership class 192
of EcxTracking class 244

msgformats table 400

N
Name() method

of EcxMember class 152
of EcxService class 285

NAS ECXpert extension 52
Next() method

of EcxAddresses class 163
of EcxDocument class 225
of EcxMember class 152
of EcxPartnership class 192
of EcxService class 286
of EcxServiceList class 302
of EcxTracking class 245

O
ObjPerm() method

of EcxMember class 153
of EcxService class 286
of EcxServiceList class 302

OutRelease() method
of EcxPartnership class 193

OutStandard() method
of EcxPartnership class 193

OutVersion() method
of EcxPartnership class 193

P
page list, in reports 326
page, in reports 326
Param() method

of EcxService classss 287
parameters, for reports 330
parameter-specification file 31

ParentName() method
of EcxMember class 153

Parse() method
of CXxsDOM class 86

PartnerId() method
of EcxPartnership class 194

PartnershipId() method
of EcxPartnerId class 211

partnership-related tables 366
partnerships table 366
Password() method

of EcxMember class 153
PathName() method

of EcxService class 287
pncard table 371
pngroup table 372
pnstd table 373
PreEnveloped() method

of EcxPartnership class 194
PrimaryXportParam() method

of EcxPartnership class 195
PrimaryXportType() method

of EcxPartnership class 196
ProcessMessage() method

of CXIPListener class 95
Progress() method

of EcxTracking class 245
public int addFile(java.lang.String

pFile,java.lang.String pFileType) 55
public int clearFileList() 55
public int getFirstTrackingID() 55
public int getNextTrackingID() 55
public int setDeliveryMethod(java.lang.String

pDeliveryMethod) 55
public int setEcxIniFileName(java.lang.String

pIniFileName) 55
public int setMapName(java.lang.String

pMapName) 55
408 Netscape ECXpert Site Administrator’s Handbook 02 July 99

public int setPassword(java.lang.String
pPassword) 56

public int setRecipient(java.lang.String
pRecipient) 56

public int setSender(java.lang.String
pSender) 56

public int submit(boolean bDataStreaming) 56
public java.lang.String getDeliveryMethod() 55
public java.lang.String getEcxIniFileName() 55
public java.lang.String getMapName() 55
public java.lang.String getPassword() 55
public java.lang.String getRecipient() 55
public java.lang.String getSender() 55

Q
Qual() method

of EcxAddresses class 163
QualId() method

of EcxAddresses class 164
query, for reports 312, 334

R
RcvrAppCode() method

of EcxPartnership class 196
RcvrAppQual() method

of EcxPartnership class 196
RcvrMBName() method

of EcxServiceList class 303
Read() method

of EcxDocument class 225
ReceiveMessaget() method

of CXIPConnection class 93
ReceiverCertificateType() method

of EcxPartnership class 197
ReceiverName() method

of EcxPartnership class 197
of EcxTracking class 246

ReceiverQual() method
of EcxPartnership class 198

ReceiverQualId() method
of EcxPartnership class 198

Release() method
of EcxDocument class 226
of EcxTracking class 246

ReleaseCharacter() method
of EcxPartnership class 199

reports
component editor 320
controls 319
data 342
database connection 310, 312
design editor 311
displaying data 319
dynamic query 337
executing 324
expression builder 322
field list, for reports 320
flow 326
footers 326
frames 317
groups 338
headers 326
joins 334
layout 317
layout pane 311
page 326
page list 326
parameters 330
query 312, 334
requester dialog 324
structure pane 311
variables 342
where clause 335
wizard 310

requester dialog, for reports 324
RetrieveLog() method

of EcxLog class 260
Run() method

of CXIPListener class 95
RunCommand() method

of EcxFtpClient class 273
02 July 99 Index 409

S
schema, database see database schema

SecondaryTitle() method
of EcxDocument class 226
of EcxTracking class 246

SecondaryValue() method
of EcxDocument class 226
of EcxTracking class 246

SecondaryXportParam() method
of EcxPartnership class 199

SecondaryXportType() method
of EcxPartnership class 200

Security() method
of EcxPartnership class 200

SegmentTerminator() method
of EcxPartnership class 201

SenderCertificateType() method
of EcxPartnership class 202

SenderName() method
of EcxDocument class 227
of EcxPartnership class 203

SenderQual() method
of EcxPartnership class 204

SenderQualId() method
of EcxPartnership class 204

SendMessaget() method
of CXIPConnection class 93

SendType() method
of EcxPartnership class 205

SeqNum() method
of EcxServiceList class 303

services
custom 30
user-defined communications 43

services table 359
SetCONTROL() method

of CXxsMSG class 75
SetDebugMode() method

of CXIPInit class 90
SetDocPath() method

of CXSubmit class 98
SetDocTransport() method

of CXSubmit class 99
SetDocType() method

of CXSubmit class 98
SetEcxIniFileName() method

of EcxSubmit class 123
SetHost() method

of CXSubmit class 97
SetIDs() method

of CXSubmit class 99
SetINPUT() method

of CXxsMSG class 79
SetLogFiles() method

of CXIPInit class 90
SetLogin() method

of EcxAddresses class 164
of EcxDocument class 227
of EcxLog class 261
of EcxMember class 154
of EcxPartnership class 205
of EcxService class 288
of EcxTracking class 247

SetMapName() method
of EcxSubmit class 123

SetMSGTYPE() method
of CXxsMSG class 76

SetOUTPUT() method
of CXxsMSG class 80

SetPassword() method
of EcxSubmit class 124

SetPort() method
of CXSubmit class 97

SetPreDefinedMONITOR() method
of CXxsMSG class 77

SetReadyForPurge() method
of EcxDocument class 228
of EcxTracking class 247

SetRECEIVER() method
of CXxsMSG class 78

SetReceiver() method
410 Netscape ECXpert Site Administrator’s Handbook 02 July 99

of CXSubmit class 98
SetRETRIES() method

of CXxsMSG class 77
SetSENDER() method

of CXxsMSG class 78
SetSender() method

of CXSubmit class 97
of EcxSubmit class 125

SetSERVICE() method
of CXxsMSG class 76

SetSTATUS() method
of CXxsMSG class 77

SetTIMEOUT() method
of CXxsMSG class 76

SetTIMESTAMP() method
of CXxsMSG class 78

SetUsrDefinedMONITOR() method
of CXxsMSG class 79

SetValues() method
of EcxDocId class 234
of EcxPartnerId class 211

SndrAppCode() method
of EcxPartnership class 202

SndrAppQual() method
of EcxPartnership class 202

Standard() method
of EcxDocument class 228
of EcxTracking class 247

StandardId() method
of EcxPartnerId class 212

StandardName() method
of EcxPartnership class 206

StandardRelease() method
of EcxPartnership class 206

StandardVersion() method
of EcxPartnership class 207

State() method
of EcxDocument class 228
of EcxTracking class 248

structure pane, for reports 311

SubElementSeparator() method
of EcxPartnership class 207

Submit() method
of CXSubmit class 96
of EcxSubmit class 125

system-wide tables 357

T
tables, in database 352
TestProductionFlag() method

of EcxPartnership class 208
Title() method

of EcxDocument class 229
of EcxTracking class 248

tracking table 379
TrackingId() method

of EcxDocId class 234
tracking-related tables 379
TrackState() method

of EcxDocument class 229
TradingXpert API Interfaces 53

list of 53
TranslatedFileName() method

of EcxDocument class 230
of EcxTracking class 249

trkdoc table 388
trkdocdetails table 394
trkgroup table 386
trkintg table 383
Trusted() method

of EcxMember class 154
Type() method

of EcxMember class 155
of EcxService class 288

U
uniquekeys table 361
user-defined communications services 43

writing 49
02 July 99 Index 411

V
Value() method

of EcxDocument class 230
of EcxTracking class 249

variables, in reports 342
Version() method

of EcxDocument class 230
of EcxTracking class 249

versions table 359

W
where clause, in reports 335
wizard, for reports 310

X
XML, ECXpert XML SDK 63

directory structure and source files 64
XportParam() method

of EcxDocument class 231
XportType() method

of EcxDocument class 231
412 Netscape ECXpert Site Administrator’s Handbook 02 July 99

	About this Book
	Before You Begin
	Downloading the Latest Version of any ECXpert Release Note

	The ECXpert Documentation Set
	Cross-Document Index
	Release Note
	Getting Started Guide
	User’s Guide
	Site Administrator’s Handbook
	Operations Reference Manual

	Audience
	Organization
	Conventions

	Introducing the ECXpert Software Developer’s Kit
	Overview
	Custom Services
	User-Defined Communications Service
	ECXpert API
	Class Library
	Relationship Between Objects and Database Records
	Database Access
	Using Lists
	Error Handling
	Oracle Warnings When Compiling the ECXpert SDK

	Custom Reports

	Creating a Custom Service
	Overview
	Language Requirements
	Call and Return Conventions
	The Parameter-specification File
	The Data-specification File
	The Custom Parameter File

	Custom Service Examples
	Parsing Command Line Arguments
	Implementing a File-copy Service
	Implementing a Submission Service

	Creating a User-defined Communications Service
	Overview
	Modifying the Configuration File (ecx.ini)
	Writing a User-defined Communications Service

	Using the NAS ECXpert Submit Extension
	About the NAS ECXpert Extension
	NAS ECXpert Extension Interfaces
	Using the NAS ECXpert Submit Extension
	Syntax and Methods
	Example

	The ECXpert XML SDK
	Overview
	Directory Structure and Source Files
	CXIP_MSG Class Reference
	Constructor and Destructor

	CXxsMSG Class Reference
	Constructor and Destructor
	Methods
	GetMSGTYPE()
	GetSERVICE()
	GetTIMEOUT()
	GetRETRIES()
	GetSTATUS()
	GetSENDER()
	GetRECEIVER()
	GetTIMESTAMP()
	GetCONTROL()
	GetMONITOR()
	GetPredefinedMONITOR()
	GetUsrDefinedMONITOR()
	GetINPUT()
	GetOUTPUT()
	SetCONTROL()
	SetMSGTYPE()
	SetSERVICE()
	SetTIMEOUT()
	SetRETRIES()
	SetSTATUS()
	SetPreDefinedMONITOR()
	SetSENDER()
	SetRECEIVER()
	SetTIMESTAMP()
	SetUsrDefinedMONITOR()
	SetINPUT()
	SetOUTPUT()
	CreateMSG()
	CreateCONTROL()
	CreateTIMEOUT()
	CreateRETRIES()
	CreateSTATUS()
	CreatePreDefinedMONITOR()
	CreateUsrDefinedMONITOR()
	CreateINPUT()
	CreateOUTPUT()

	CXxsDOM Class Reference
	Constructor and Destructor
	Methods
	Parse()
	Format()
	GetErrors()
	GetDTD()
	GetDocument()
	GetObjectName()
	GetObjectData()
	GetObjectAttribute()

	CXIPInit Class Reference
	Constructor and Destructor
	Methods
	Init()
	SetDebugMode()
	SetLogFiles()
	Base64Decode()
	Base64Encode()

	CXIPConnection Class Reference
	Constructor and Destructor
	Methods
	Connect()
	SendMessage()
	ReceiveMessage()

	CXIPListener Class Reference
	Constructor and Destructor
	Methods
	Init()
	Run()
	ProcessMessage()

	CXSubmit Class Reference
	Constructor and Destructor
	Methods
	Submit()
	SetHost()
	SetPort()
	SetSender()
	SetReceiver()
	SetDocType()
	SetDocPath()
	SetDocTransport()
	SetIDs()

	Examples

	The EcxBase Class
	About the EcxBase Class
	EcxBase Class Reference
	Constants and Data Types
	Constructor and Destructor
	Methods
	ClearErr()
	Errnum()
	Errmsg()

	The EcxInit Class
	About the EcxInit Class
	Using the EcxInit Class
	EcxInit Class Reference
	Constructor and Destructor

	The EcxSubmit Class
	About the EcxSubmit Class
	Using the EcxSubmit Class
	EcxSubmit Class Reference
	Constructor and Destructor
	Methods
	AddFile()
	ClearFileList()
	GetDeliveryMethod()
	GetEcxIniFileName()
	GetFirstTrackingID()
	GetMapName ()
	GetNextTrackingID()
	GetPassword()
	GetRecipient()
	GetSender()
	SetDeliveryMethod()
	SetEcxIniFileName()
	SetMapName()
	SetPassword()
	SetRecipient()
	SetSender()
	Submit()

	The EcxLogin Class
	About the EcxLogin Class
	Using the EcxLogin Class
	EcxLogin Class Reference
	Constructor and Destructor
	Methods
	Login()
	Logout()
	MemberType()

	The EcxMember Class
	About the EcxMember Class
	Using the EcxMember Class
	Creating Member Objects
	Adding Members
	Changing Members’ Fields
	Listing Members
	Deleting Members

	EcxMember Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	Active()
	Add()
	Change()
	Clear()
	ContactAddress1()
	ContactAddress2()
	ContactCity()
	ContactCompany()
	ContactCountry()
	ContactEmailId()
	ContactFax()
	ContactName()
	ContactPhone()
	ContactState()
	ContactZip()
	Delete()
	Description()
	Get()
	IsGroup()
	List()
	ModByGroup()
	ModByUser()
	ModDt()
	More()
	Name()
	Next()
	ObjPerm()
	ParentName()
	Password()
	SetLogin()
	Trusted()
	Type()

	The EcxAddresses Class
	About the EcxAddresses Class
	Using the EcxAddresses Class
	EcxAddresses Class Reference
	Constructor and Destructor
	Methods
	Add()
	Clear()
	Delete()
	List()
	Member()
	More()
	Next()
	Qual()
	QualId()
	SetLogin()

	Partnership-Related Classes
	About the EcxPartnership Class
	Using the EcxPartnership Class
	Creating Partnership Objects
	Adding Partnerships
	Listing Partnerships
	Deleting Partnerships

	EcxPartnership Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	AckExpected()
	Active()
	Add()
	ArchiveWaitPeriod()
	Change()
	Clear()
	DecimalPointCharacter()
	Delete()
	DeleteWaitPeriod()
	Description()
	DocLastControlNumber()
	DocLock()
	DocPriority()
	DocType()
	ElementSeparator()
	GenOptEnv ()
	Get()
	GroupGenerateDocAck()
	GroupLastControlNumber()
	GroupLock()
	GroupType()
	IntchngAckWaitPeriod()
	IntchngLastControlNumber()
	IntchngGenerateAck()
	IntchngLock()
	List()
	MapName()
	More()
	Next()
	OutRelease()
	OutStandard()
	OutVersion()
	PartnerId()
	PreEnveloped()
	PrimaryXportParam()
	PrimaryXportType()
	RcvrAppCode()
	RcvrAppQual()
	ReceiverCertificateType()
	ReceiverName()
	ReceiverQual()
	ReceiverQualId()
	ReleaseCharacter()
	SecondaryXportParam()
	SecondaryXportType()
	Security()
	SegmentTerminator()
	SndrAppCode()
	SndrAppQual()
	SenderCertificateType()
	SenderName()
	SenderQual()
	SenderQualId()
	SendType()
	SetLogin()
	StandardName()
	StandardRelease()
	StandardVersion()
	SubElementSeparator()
	TestProductionFlag()
	MapDirection()

	About the EcxPartnerID Class
	EcxPartnerID Class Reference
	Constructor and Destructor
	Methods
	DocType()
	PartnershipId()
	SetValues()
	StandardId()

	Document-Related Classes
	About the EcxDocument Class
	Using the EcxDocument Class
	EcxDocument Class Reference
	Constants and Data Types
	Constructor and Destructor
	Methods
	CardCount()
	CardFlags()
	CardIOType()
	Clear()
	CreationDate()
	DataState()
	Delete()
	DocId()
	DocType()
	FileName()
	Get()
	List()
	ModifyDate()
	More()
	Next()
	Read()
	Release()
	SecondaryTitle()
	SecondaryValue()
	SenderName()
	SetLogin()
	SetReadyForPurge()
	Standard()
	State()
	Title()
	TrackState()
	TranslatedFileName()
	Value()
	Version()
	XportParam()
	XportType()

	About the EcxDocID Class
	EcxDocID Class Reference
	Constructor and Destructor
	Methods
	DocumentId()
	GroupId()
	InterchangeId()
	SetValues()
	TrackingId()

	The EcxTracking Class
	About the EcxTracking Class
	Using the EcxTracking Class
	EcxTracking Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	Clear()
	CreationDate()
	Delete()
	DataState()
	DocType()
	FileName()
	Get()
	List()
	ModifyDate()
	More()
	Next()
	Progress()
	ReceiverName()
	Release()
	SecondaryTitle()
	SecondaryValue()
	SetLogin()
	SetReadyForPurge()
	Standard()
	State()
	Title()
	TranslatedFileName()
	Value()
	Version()

	The EcxLog Class
	About the EcxLog Class
	Using the EcxLog Class
	EcxLog Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	Clear()
	ELCategory()
	ELDocId()
	ELEventId()
	ELEventShortMsg()
	ELGrpId()
	ELId()
	ELIntgId()
	ELSeverity()
	ELTDId()
	ELTrkId()
	LogEvent()
	More()
	Next()
	RetrieveLog()
	SetLogin()

	The EcxFtpClient Class
	About the EcxFtpClient Class
	Using the EcxFtpClient Class
	Listing Files in the Current Directory
	Retrieving File Names
	Transferring Files

	}EcxFtpClient Class Reference
	Constructor and Destructor
	Methods
	GetListCount ()
	GetFirstListEntry ()
	GetNextListEntry ()
	GetReplyCode ()
	GetReplyMsg ()
	Init ()
	IsReplyGood ()
	RunCommand ()

	The EcxService Class
	About the EcxService Class
	Using the EcxService Class
	Creating a Service Object
	Adding a Service
	Listing All Services
	Modifying a Service
	Deleting a Service

	EcxServiceClass Reference
	Class Variables
	Constructor and Destructor
	Methods
	Add ()
	Change()
	Clear()
	Delete()
	EntryName ()
	Get()
	Id ()
	List()
	MaxThread ()
	ModByGroup()
	ModByUser()
	ModDt()
	More ()
	Name()
	Next()
	ObjPerm()
	Param ()
	PathName ()
	SetLogin()
	Type()

	The EcxServiceList Class
	About the EcxServiceList Class
	Using the EcxServiceList Class
	Creating a Service List Object
	Adding a Service List
	Listing All Service Lists
	Modifying a Service List
	Deleting a Service List

	EcxServiceList Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	Add ()
	Change()
	Clear()
	Delete()
	Desc ()
	ErrorHandler ()
	Get()
	List()
	ModByGroup()
	ModByUser()
	ModDt()
	More ()
	Next()
	ObjPerm()
	RcvrMBName ()
	SeqNum
	ServiceListName ()
	ServiceParams ()
	SetLogin()
	SndrMBName ()
	SVRId ()
	SVRName ()
	TypeName ()

	Customizing Reports
	Overview
	Starting a New Report
	Building a Query
	Laying Out a Report
	Creating Frames
	Displaying Data
	Running a Report
	Adding Headers and Footers

	Adding Report Parameters
	Building Complex Queries
	Joining Tables
	Creating Dynamic Queries

	Displaying Groups of Data
	Displaying Row-related Data

	ECXpert Database Schema
	Cautions in Using the Database Schema
	Extending Table and Rollback Segment Space
	Values of AckState
	Alphabetical Listing of Tables
	Schema Overview
	System-wide Tables
	Job
	Versions
	Services
	DTServices
	UniqueKeys
	BlobInfo

	Membership-related Tables
	Members
	MBAddresses

	Partnership-related Tables
	Partnerships
	PNDocs
	PNCard
	PNGroup
	PNStd

	Certificate-related Tables
	Certificates
	CRL
	CertTypeInfo
	KeyPairs

	Tracking-related Tables
	Tracking
	TrkIntchg
	TrkGroup
	TrkDoc
	TrkSegment
	TrkDocDetails
	MDNInfo
	Oftp
	EventLog
	MsgFormats

	Index

