Developer’s
Handbook

Netscape ECXpert™

Version 3.0

Netscape Communications Corporation (“Netscape”), a subsidiary of America Online, Inc., and its licensors retain all
ownership rights to the software programs offered by Netscape (referred to herein as “Software”) and related
documentation. Use of the Software and related documentation is governed by the license agreement accompanying
the Software and applicable copyright law.

Your right to copy this documentation is limited by copyright law. Making unauthorized copies, adaptations, or
compilation works is prohibited and constitutes a punishable violation of the law. Netscape may revise this
documentation from time to time without notice.

THIS DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND
ARISING FROM ANY ERROR IN THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION ANY LOSS OR
INTERRUPTION OF BUSINESS, PROFITS, USE, OR DATA.

The Software and documentation are copyright ©1999 Netscape Communications Corporation, a subsidiary of
America Online, Inc. All rights reserved.

Portions of this product are based upon copyrighted materials of Oracle Corporation, Inc. and Netscape
Communications Corporation, RSA Data Security, Inc. copyright © 1994, 1995 RSA Data Security, Inc. Portions
copyright © 1996 BMC Software, Inc. All rights reserved. Portions copyright © 1996 TSI International, Inc. Portions
copyright © 1996-1997 Actuate Software Corporation. All rights reserved.

Netscape, Netscape Navigator, and the Netscape N and Ship’s Wheel logos are registered trademarks in the United
States and other countries of Netscape Communications Corporation, a subsidiary of America Online, Inc. ECXpert,
TradingXpert, and other Netscape logos, product names, and service names are also trademarks of Netscape, which
may be registered in some countries. Other product and brand names are trademarks of their respective owners.

The downloading, exporting, or reexporting of Netscape software or any underlying information or technology must
be in full compliance with all United States and other applicable laws and regulations. Any provision of Netscape
software or documentation to the U.S. Government is with restricted rights as described in the license agreement
accompanying Netscape software.

EHCRYPFTIOH EHGINE

The Team: (listed alphabetically)

Jim Adkins, Moosa Choudry, Brenna Chow, Jun Ding, Cyril Egan, David Enck, Eric Enders, June Foster, Kaining Gu,

Jeanine Harriman, Scott Jolly, Pooja Kochadai, Albert Lee, David Lewis, Donagh Noone, Dong-wei Liao, Ed Miner, Lea
Lucente, Suresh Mani, Shelton Mar, Alex Medina, Emily Morris, Linda Pratt, ALN Reddy, Naren Tammineni, Tien Tran,
Johnny Wang, Wade Williamson, John Wolley, Jeff Wreden, Ryh-Wei Yeh, Prasad Yendluri, Leon Yerevanian

Thanks also to the following contributors: (listed alphabetically)

Robert Al-Jaar, Bernard Blundell, Dave Butler, Karen Chang, Daniel Chiu, Jimmy Chow, Ravi Devesetti, Cyril Egan,
Rakesh Garg, Mehrdad Golbidi, Christopher Guzman, Stephen Hulme, Ken Johnson, Robert Kemner, Suntae Kim,
Eric Krock, Shirish Kumar, Jason LaBranch, Tom Limanek, Felicia Lin, Morten Marquard, Steven Martin, Craig
Mosenson, Jay Mundanat, Donagh Noone, James Orkins, Roland Pennings, Stefano Picozzi, Max Poon, Jay Raman,
Jane Richter, Christian Schutz, Kent Schwab, Michiel Smit, Ronald Tay, Stacy Thurston, Blaine Williams

Version 3.0

©Netscape Communications Corporation 1997-1999
All Rights Reserved

Printed in USA

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

02 July 99

02 July 99

ADOUL thiS BOOKceeiieieeee e 11

BefOre YOU BeQIN ...ooiviiiiie ettt 11
Downloading the Latest Version of any ECXpert Release Note.................... 11
The ECXpert Documentation SEt........cccocvviieeiieiiieeiie e 12
CrosS-DOCUMENT INAEXeoiieiiieiie ittt 12
REIEASE NOLEeeiveiitie ittt 13
Getting Started GUITE.........ooieeiiie et 13
USEI'S GUILE ...ttt sttt sttt bbbt bbbt b 13
Site Administrator's HanAbOOKccoouiiiiiiiiiiiie e 14
Operations Reference Manualcccovvvviieiiieinie s 14
F R (o 11T o (ol S SRRSO 14
(@ (o T- Va1 -1 o] o 1SR 15
(070] 01V ZCT o 1 To] o S JH TSR OPRUPOPRTRTOTS 17

Chapter 1 Introducing the ECXpert Software Developer’s Kit... 19

OVEBIVIBW ...ttt et et s b ettt st et nb e b st e e sbeene e 20
CUSEOM SEIVICES ...ttt ettt ettt bttt ettt sbe e sbe et e e e e sbeesbeenbeesneeannen 20
User-Defined COmMmMUNICAtIONS SEIVICEccuviieiiiiiiniiiiiie e 20
L0 o T4 Y o] SRR 20
(O P T T o - Y S SPE 22
Relationship Between Objects and Database Records.........cccocceeverieiiieninnne 23
DatADASE ACCESS ...veereiitieieiie ittt sttt et sttt e e st sre b 23
USTNQG LISES ..ttt ettt ettt ettt sttt sa e b e e s sae e sneenbee s 24
o] g =T T | 1T T USSP 24
Oracle Warnings When Compiling the ECXpert SDK..........cccoooeiiieiiniinnnnen. 26
(010110 o ¢ I =T 0T g £ ST R 27

Contents iii

Chapter 2 Creating a CUuStoOM SErVICEvvvvivviiiiiiiiiieiiieeeeeeeeeenn, 29

OVEBIVIBW .ttt ettt sttt st b e bbbt e st st et e et sre e 30
Language ReQUITEIMENTSeiiiiiieeiee ettt e enee e e 30
Call and Return CONVENLIONSuiii ittt sttt sae e e 31
The Parameter-specification File...........ccociiiiiiiiiii e 31
The Data-specification File..........cccciveiiiiiiiiec e 32
The Custom Parameter File..........coooiiiiiiiiie e 33
CUStOM SEIVICE EXAMPIES ...ccviviiecieiieie ettt ee et s 39
Parsing Command Line ArgUMENTScocieiuiriiieiie e 39
Implementing a File-CoOPY SEIVICEcovveiieiii e 40
Implementing a SUDMISSION SEIVICE.......coiiiiiiiiiie e 42
Chapter 3 Creating a User-defined Communications Service..... 43
OVEBIVIBW .ttt ettt stttk st b e bbbt enbe st et e et nre e 44
Modifying the Configuration File (ECX.iNT)cooiiiiiiiiiieie e 45
Writing a User-defined Communications ServiCe.........ccccvvvvieevverieiieesiesineenns 49
Chapter 4 Using the NAS ECXpert Submit Extension.................. 51
About the NAS ECXpert EXIENSION........coiuiiieiiiiie e 52
NAS ECXpert EXtension INterfaces.........cccvevivrviviiieenienie e 53
Using the NAS ECXpert Submit EXENSION.cooeiiiiieiiiiiieiee e 53
Syntax and Methodscocveiiieiiiie e 55
EXAMPIE <ot 56
Chapter 5 The ECXpert XML SDKcoooviiiiiiiiiii 63
OVEBIVIBW ...ttt ettt ettt ettt et b e ettt eb et sbe et sbeene e e nnee e 64
Directory Structure and SOUICE FleS........ccoiiiiiiiiiiiiieie e 64
CXIP_MSG Class REFEIENCEcueviveeiieiee st e ree ettt 66
ConsStructor and DESLIUCTONcoiiiiieiieiie et 66
CXXSMSG Class REFEIENCEceiviiiiciiiie et 67
CoNStructor and DESLIUCTONcoiiiiieiieiie et 67
MELNOAS. ...t b e et nre s 68
CXXSDOM Class REFEIENCEciiveiiiiiiiiiee sttt 85
Constructor and DESLIUCLONcouiviiiriiiie st 85
1Y =31 0 To Lo KSR PUURUTRRUPRPPRTON 86

iv. Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXIPINit Class REFEIENCE........veieiiieeiee ettt ettt aee e 89

Constructor and DESLIUCIONc..cciiie et 89
1Y =T 1 o Lo SRS 90
CXIPConnection Class REFEIENCEcccuveiiiiciiiec et 91
Constructor and DESIUCTONcveiieiieeiee e see e 92
1Y =Y g o T USSP USSS 92
CXIPListener Class REFEIENCEcoouiiiiiei e 93
Constructor and DESIUCTONccvciuieiieeie e see e ee e see e 94
1Y =Y g o T USSR USPS 94
CXSubmit Class REFEIENCEccueieiviiie e 96
Constructor and DESLIUCLONcciiie et 96
1Y =T 1 T Lo S 96
EXAIMPIES. .. et e a e b sa e srae e 99
Chapter 6 The ECXBase ClasS........ccuieeeiiiieiiiiiiiii e e e 101
ADbOUL the ECXBASE ClaSS.....ucciuiiieeieieiie e eiee st e steeseesreessteesaeessee s e ee e enee e 102
EcxBase Class REfErENCE........cocvic i 102
Constants and Data TYPES.....ueuiueerieereerieriireseeseesieeseesnreeeeseesseeseeesseennees 103
Constructor and DESLIUCTONcc.ueiciiiieiie st 103
1Y =] 1 o Lo OSSPSR 103
Chapter 7 The EcXInit Class...........cccceeveviii, 107
AbOUL the ECXINIt ClAaSSveiiiiie e 108
UsIiNg the ECXINIt ClASS.......ecviiieeitieiie et steese st sre e see et s e e neeenneens 108
ECXINit Class REFEIENCEooi e e 108
Constructor and DESIUCTONc.vcivieiieeiie e s 109
Chapter 8 The EcxSubmit Class..........cccceeeeviieeii, 111
About the ECXSUDMIL ClaSSccciuii et 112
Using the ECXSUDMIt ClaSS.......cccccvieiiiiiiee ettt 114
EcxSubmit Class REFEIENCEeoviiie e 117
Constructor and DESIUCTONc.vciuieieeeii e e e 117
1Y =Y i o T USSR 118

02 July 99 Contents v

Chapter 9 The ECXLOGIN ClasS..........covvveviveeiiiiiiiiieses e 127

AbOoUt the ECXLOGIN ClaSSciviiiereieeiieieieestie e stee e ste st tae e enae e e 128
Using the ECXLOGIN ClaSS......uiiiiiiie ittt 128
ECXLOQIN Class REFEIENCEeccveeiee i nre e 129
Constructor and DESIIUCTONcivieiie ettt 129
MELNOAS. ... et 129
Chapter 10 The EcxMember Classccccoceevviiiieiiiiiiiecceiiicceee e 133
AbOoUt the ECXMEMDBDET ClIaSS.......eiiiiiiiiiiiiiiieestie ettt 134
Using the ECXMEMDBEr ClaSScccvviviiiiiesecsi et 135
Creating Member ODJECES.coiuiiiiii s 136
WX (o [T aTo Y 1= o1 01T 3RS 136
Changing Members’ FIeldSc.uiiiiiiieie e 137
LIStING MEMDIEISeivieitie ettt e e e e eanree s 138
Deleting MEMDEIS.c.eiiiiietee et 139
EcxMember Class REFEIENCE ..o e 139
Class Variablesoouiiiii s 140
Constructor and DESIIUCTONcoviiiiieii e e 140
1Y L3 1 0 To Lo L PRSP PRV PTU PR 141
Chapter 11 The EcxAddresses Classccccvveevviiiieeiiiiniiiiiinee, 157
About the ECXAAArESSES ClasS.......cuuviiiiieieeie st 158
Using the ECXAAAIESSES ClIaSSeiveriiiiiiieiie ittt 158
EcxAddresses Class REfEIENCE.........uvviiiiiiiiie e 159
Constructor and DESIIUCTONciviaiie et 160
MELNOAS. ...t ettt 160
Chapter 12 Partnership-Related Classes.......cccccooeeeevviiiiiineeencnnnn, 165
About the ECXPartnership Class. ..o 166
Using the ECXPartnership Classcccucveieirieeieenieeieesee e see e seee e 169
Creating Partnership ODJECES........cociiiiiiiei e 170
Adding PartNershipscccocveiviie e 170
Listing Partnerships.........cooueiiiiiie e 171
Deleting PartNershipsoooveeeeiieeeie sttt sree e nees 174
EcxPartnership Class REfErenCe.coooiiiiiiiiiieiie e 174

vi Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

(O F- A= 14 T=1 o] [T 175

Constructor and DESLIUCLONcueiciiieiie et 177
1Y =] 1 o Lo OSSR 178
About the ECXPartnerID Class.........couuieiiieeiiiieciee st sree s esee e e ve e sine e 209
EcxPartnerID Class REfEIrENCE.......c.ccvveiie i 210
Constructor and DESLIUCIONccuviiiiiieiiie et 210
1Y =Y i o T USSR 211
Chapter 13 Document-Related Classes.........cccoeeeevvvieiiiiiiieeneeennns 213
About the ECXDOCUMENT ClaSSccvveivreiiieieeiieesieeseesteessteesieesiee e e see e 214
Using the ECXDOCUMENT ClASS........oiiiiiiiiieiiiiniie ettt 215
EcxDocument Class REFEIENCEccovevee it 218
Constants and Data TYPES......ueiuieueriieiierie et seeenbe s 218
Constructor and DESIUCTONvcivieiieeiie s e e 218
METNODS ... e e 219
AbouUt the ECXDOCID ClaSS......uueiuieiieiieaireieesieesteesieeevessteesieesnae s eeeseeenseesneas 231
ECXDOCID Class REfEIrENCE........ueciieee et 232
Constructor and DESLIUCTONc.vciveeiieeiiece e 233
1Y =Y i To T USSR 233
Chapter 14 The EcXTracking ClassS.........ccccccvvieiiiieirieiiiiii e, 235
About the ECXTracking ClIaSScccveiueiiureiieeieesteesieesees e esieesseesneeeee e eseesneas 236
Using the ECXTracking Class.......ccuoieiiiiiiieiiisiie et 237
EcXTracking Class REFEIENCEvovviviiie e 239
Class VariablESscocviiiiiii et 239
Constructor and DESIUCTONcvciveeiieeiee e e e 239
1Y =Y i Lo T SRS 240
Chapter 15 The ECXLOQ ClaSS......ccccuviiiiiiieiiiiiiie e e e e 251
ADOUL the ECXLOQG ClaSS ...eiuvveiieieeieiiiiie et sieestee et e e e sre e 252
USING the ECXLOQ ClaSSeiiiiiiieieitieiiee ettt ettt 253
ECXLOQ Class REFEIENCE.ccuueiiiiiie ettt stee et e e nre e 254
Class VariablEscocviiiiiii et 254
Constructor and DESIUCTONcveiuieiieeie et sec e 255
1Y =Y i Lo T SRS 256

Contents vii

Chapter 16 The EcxXFtpClient Class.......c.cccccvvvvvvviiniiiiiiiiieieieeenn, 263

About the ECXFLPCIIENt CIASSvvvcveeieeie et 264
Using the ECXFLPCHENt ClasScoiiiiiiiiiiiiee et 264
Listing Files in the Current DIreCtOry........cocvvvuveieesieiie e 265
Retrieving File NaMES........cooiiiie e 267
Transferring FIlESoivv e 268
JECXFtpClient Class REFEIENCE........ccuui i 270
Constructor and DESIIUCTONccviiiiieiieiieiirie e 270
1Y L3 1 g To Lo LRSSV PTOTRTP 270
Chapter 17 The EcXService Classcccvviiiviiiiiiiiiiieeeeeeeeeeeeee 275
AbOUL the ECXSEIVICE ClaSS......civeiiiiiiiiiiie ettt 276
UsSiNg the ECXSErViCe Classccoiueiiiiiiieiiiie st 277
Creating @ Service ODJECT.......ccvciieeii s 277
AdAING @ SEIVICEtiiiiiiiiiee ettt sb e 278
[T T gL A | BT VTSR 278
MOITYING @ SEIVICE ..cveiiiiieieie e e 279
Deleting @ SEIVICEicceiiie ettt sttt ettt e e anneenes 279
EcXServiceClass REfErENCEcoouiiiiiiie e 280
Class Variables ... s 280
Constructor and DESIIUCTONcivieiie ittt 281
MEENOAS. ... et 281
Chapter 18 The EcxServiceList Classccccevvvviiiiiiiiiveeiiiieneeene, 291
About the ECXSErVICELISt CIASScueiieiriiiiriiesiie ettt 292
Using the ECXSErviCeList Class........cuvivirierieiriieieisiessee et see et stee e 293
Creating a Service List ODJECTcooiiiiiiiiie e 293
FaNe (o [T aTo B W= AV Tod I) TR 294
LiSting All SENVICE LISTS ...ceiuvieiiiiiieeiee ettt 294
MOdifying @ SEIVICE LIStcovueiiiiiiiiiiiiie i e 295
Deleting @ SErVICe LiSt......cciuiiieiiiiii e se e e et 296
EcxServiceList Class REFEIENCEccccvoiiiiiiiie e 296
Class Variables ... e 297
Constructor and DESIIUCTONcoviiiiiieiirieeie e 297
MEENOAS. ...ttt 297

viii Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter 19 Customizing Reports........cccccceveiiiiiiiiieee, 307

OVBIVIBW.....c.tiiie ittt sttt st et a ettt sb e ebe et st e e besbe e e e saesbeenee st 308
Starting @ NEW REPOITccuiiiiieie ettt 309
BUIIAING @ QUETY ...ttt ettt et ae et e ste e srae e e sneeans 312
LaYiNg OUL @ REPOIuiiiiiiieitie ittt sttt sttt se e b 317
Creating FIamES ...cccuviiiie e ettt et een e e naeenaesneeeres 317
DiSPIayiNg Data........ueeiiiiiieiiiiie et 319
RUNNING @ REPOM....c.eiiiieeeciie st e e e 324
Adding Headers and FOOLEISociiiiiiiiiiie e e 326
Adding REPOIt PAramMELErSccueiieeieeiee e e sie e se e ste e e e sreennae e 330
Building COmMPIexX QUEKIEScoiiiiiiiiieeiie ettt s 334
JOINING TADIES ..o et 334
Creating DYNamic QUETIEScoiuuiiiiiiieiie ettt st 337
Displaying Groups Of DAtaccoeeviriiieniiieneiine e e 338
Displaying RoOw-related Dataccoieiriiiiiiiieiieiie e 342
Appendix A ECXpert Database Schema.............ccccccevvvvvvvvveeenne, 347
Cautions in Using the Database Schema.........ccccccvovieiiceevenne e 348
Extending Table and Rollback Segment Space..........cccooeviiiiiiinnenniiiicciene 348
ValuES Of ACKSTALEeoiiieieiiiie et 349
Alphabetical Listing of TabIes ..o 352
SCNEMEA OVEIVIEW.......viiiiie ittt st et nre s 354
SYSEEM-WIE TADIEScieiiieiiiee e e e 357
T] o T PRSPPSO 357
[V 421 £ o] S USSR PR PR 359
] TP PRSPPI 359
DT SBIVICES. ..ttt ettt et b et es bt e bt e b e eenbeeae s 360
L0 T To [U =T Q=) PSS 361
BIODINTO ... 362
Membership-related TabIES........cccuviiiiieecieiiee e 362
IMBIMDIEIS ...ttt sttt ettt et a e se e e b e e e ena e e nneenee s 363
IMBAGAIESSES ...ttt sttt sttt ettt se e bt e bt esbesteeseesbesreenne s 365

02 July 99 Contents ix

Partnership-related Tablescccocoveiiiii e 366

PaTNEISNIPS. ..o et 366
PINDIOCS. ...tttk b ettt eb ettt 368
02 (o TSP PRPPTRRRN 371
N[o 1 o ST 372
PINSTA ...ttt sttt s e e b et s te e sreere b e nre e 373
Certificate-related TabIes.........ooo i 375
CertITICALES vttt 375
01 SRS STR 376
L0114 i 18/ 1= 1) o 1SS 377
GGV 22 UL £ T PP R T PO R 378
Tracking-related TabIES.........cvcuviiieiieie e 379
THRACKING ettt ettt b ettt bbb b r e enbe e ne s 379
12411 (o] o ST 383
2] (o 11T« R PRSP UPUPRTR 386
TIKDOC ..ttt ettt et ettt et be e 388
TEKSEOMENT ...ttt re et e sbe e e e enaeene s 394
TrKDOCDELAIIS ...t e e 394
IMDININTO Lot ettt ne e e ereenee s 396
L] 1 o PSSR 397
EVENTLOG. ettt 398
MSGFOIMIALS ...t eeeee ettt e e e e e et e e s e e nnte e eneeesnnaeesnneee e 400
FNOEX .ttt 401

X Netscape ECXpert Site Administrator’s Handbook 02 July 99

About this Book

his Handbook describes the concepts, interface and underlying
data organization of the ECXpert Software Developer’s Kit.

This Preface discusses the intended audience, the organization

of the Handbook, and provides a listing of typographic conven-

tions used in this document. If you spend a few minutes looking

through the Preface before reading the rest of the Handbook,
you will be able to utilize the Handbook more effectively.

Before You Begin

02 July 99

You only need to use this manual if you are running command line utilities or
your are developing C++ programs that submit files to ECXpert or access the
ECXpert database.

If you need an overview of ECXpert, read the ECXpert System Site Adminis-
trator’s Guide first. You should read Chapter 1, “Introducing the ECXpert
Software Developer’s Kit,” in this manual to obtain a brief overview of the SDK
components. If you are using the API in conjunction with TradingXpert, you
should read the TradingXpert Getting Started Guide as well.

Before you begin, download the latest version of the ECXpert Release Note.
See the following section for instructions.

Downloading the Latest Version of any
ECXpert Release Note

We continuously update Netscape ECXpert release notes. Follow these steps
to:

= Determine whether you have the latest version of any Netscape ECXpert
Release Note

About this Book 11

The ECXpert Documentation Set

Note

Download a copy of any Netscape ECXpert Release Note

Provide a link to any ECXpert Release Note on the Netscape ECXpert
Support | Help | Manuals screen

In these instructions, the environment variable or $NSBASE is the full path
to the Netscape ECXpert installation directory. See “Setting Up the $SNSBASE
Environment Variable” in the ECXpert Getting Started Guide.

Go to the ECXpert Product Information and Support web page.
http://help.netscape.com/products/apps/ecxpert/

Find the most recent version of the ECXpert Release Note.

To find the most recent version of the ECXpert Release Note, look at the
date next to the link to the ECXpert Release Note PDF file.

Download the ECXpert Release Note PDF file.

Copy the release note into the manuals directory.

$NSBASE/NS-apps/ECXpert/Ul/htmli/help/manuals

Include a link to the release note on the “manuals” screen.

Edit the $NSBASE/NS-apps/ECXpert/Ul/html/help/frm2man.htm file to
include a reference to the ECXpert Release Note PDF file.

A link to the ECXpert Release Note PDF file should appear in the left frame
of the Support | Help | Manuals screen.

The ECXpert Documentation Set

You may wish to refer to other ECXpert books for additional information. This
section discusses each book in the ECXpert documentation set.

Cross-Document Index

This Cross-Document Index indexes topics across the entire document set. If a
topic appears in multiple books, the Cross-document Index lists each book and
page number the topic appears on.

12 Netscape ECXpert Site Administrator’s Handbook

The ECXpert Documentation Set

Release Note

After you receive the ECXpert 2.0 software, before you do anything else, you
should download the ECXpert 2.0 Release Note. See “Downloading the Latest
Version of any ECXpert Release Note” on page 11 for instructions.

The Release Note contains:

= A list of bugs fixed in the current release

= A list of all documentation corrections

= Warnings and workarounds for known problems

= Additional important information you should know before you install or use
ECXpert

The Release Note is platform-specific, so make sure you have the right version
for the platform you're using.

Getting Started Guide

The ECXpert Getting Started Guide is the book you use to install ECXpert. It
includes preinstallation tasks—including basic instructions for installing or
upgrading to the required version of Oracle—ECXpert installation steps, and
information on additional tasks you may wish to perform after you install
ECXpert. The Getting Started Guide is platform-specific, so make sure you have
the right version for the platform you're using.

User’s Guide

All documentation needed by ordinary users is supplied in the ECXpert User’s
Guide and in the online help.

02 July 99 About this Book 13

Audience

Site Administrator’s Handbook

The ECXpert Site Administrator’s Handbook is written for the ECXpert System’s
site administrator. This book provides an overview of the ECXpert system and
uses specific examples, or “scenarios,” to illustrate the different ways in which
ECXpert can be used most effectively in a wide variety of different business
situations. It also covers the ECXpert Server Administrative Interface in depth,
discusses the ECXpert commandline utilities, and explains how to integrate
ECXpert with Oracle Financials, SAP, and MQSeries.

Operations Reference Manual

If you ever have difficulty using ECXpert, the ECXpert Operations Reference
Manual more than likely documents a quick resolution. This book contains
basic troubleshooting guidelines for ECXpert, other Netscape products, and
Third-party products. It also includes a complete error message reference.

Audience

This manual is written for several audiences:
= system administrators who want to run command line utility programs

= C++ programmers who want to manipulate the ECXpert database outside of
ECXpert or submit files to ECXpert for processing

= database administrators who need to know the structure of an ECXpert
database

14 Netscape ECXpert Site Administrator’s Handbook

Organization

Organization

02 July 99

This manual is divided into 15 chapters and three appendixes:

Chapter 1, “Introducing the ECXpert Software Developer’s Kit,” identifies the
command lines utilities and classes in the SDK. It also introduces custom
services.

Chapter 2, “Creating a Custom Service,” describes how to create a custom
service.

Chapter 3, “Creating a User-defined Communications Service,”describes how
to write a program or script that you want to install as a user-defined
communications service.

Chapter 4, “Using the NAS ECXpert Submit Extension,” describes the JavaS-
cript API for the SDK.

Chapter 5, “The ECXpert XML SDK,” describes the the ECXpert XML software
developer kit (SDK).

Chapter 6, “The EcxBase Class,” describes the base class for classes in the
SDK.

Chapter 7, “The EcxlInit Class,” describes a class for initializing other objects.

Chapter 8, “The EcxSubmit Class,” describes a class for submitting files to
ECXpert for processing.

Chapter 9, “The EcxLogin Class,” describes a class that represents a logged-in
user.

Chapter 10, “The EcxMember Class,” describes a class that represents
member records in an ECXpert database.

Chapter 11, “The EcxAddresses Class,” describes a class that represents
member address records in an ECXpert database.

Chapter 12, “Partnership-Related Classes,” describes a class that represents
partnership-related records.

Chapter 13, “Document-Related Classes,” describes a class that represents
records in an ECXpert database for documents sent to the logged-in user via
ECXpert.

Chapter 14, “The EcxTracking Class,” describes a class that represents
records in an ECXpert database for documents sent from the logged-in user
via ECXpert.

About this Book 15

Organization

Chapter 15, “The EcxLog Class,” describes a class that represents log records
in an ECXpert database.

Chapter 16, “The EcxFtpClient Class,” describes a class that is an FTP client
API which allows you to send and receive files via FTP.

Chapter 17, “The EcxService Class,” describes a class that represents service
records in an ECXpert database.

Chapter 18, “The EcxServiceList Class,” describes a class that represents
service list records in an ECXpert database.

Chapter 19, “Customizing Reports,” describes how to use the Actuate
Reporting System to create custom reports that access the ECXpert database.

Appendix A, “ECXpert Database Schema,” details the table structure of the
database underlying the ECXpert System.

16 Netscape ECXpert Site Administrator’s Handbook

Conventions

Conventions

A number of typographic conventions are used throughout this manual to help
you recognize special terms and instructions. These conventions are summa-

rized in the table below.

Convention | Meaning Example

boldface items on the screen Click the Submit button to save your changes.
names of keys Press Enter to clear the message.

boldface higher level descriptions of | 3. Enter the group information.

numbered | tasks you perform (more Enter the name in the Group Name field, and a

steps detailed instructions follow) short description in the Description field.

italics key words, such as terms The notices posted on an electronic BBS are called
that are defined in the text | articles.
names of books For more information, refer to the Netscape

ECXpert Getting Started Guide.
courier command line input or Enter the following command:
font output

s *.htm

text file content, such as
HTML templates and con-
figuration files

<TlI TLE>Password Check</TI TLE>
<I MG SRC="/ui/icons/hd_svcs.gif">

code samples

const char* getNane() const;

Synt ax:

02 July 99

About this Book 17

Conventions

18 Netscape ECXpert Site Administrator’s Handbook

Chapter

Introducing the ECXpert Software
Developer’s Kit

his chapter provides a description of the software developement kit for
ECXpert. This description provides an overview of the command line
utilities, custom services, and API.

This chapter contains the following sections:
= Overview

« Custom Services

= User-Defined Communications Service

= ECXpert API

< Custom Reports

02 July 99 Chapter 1, Introducing the ECXpert Software Developer’s Kit 19

Overview

Overview

The ECXpert Software Development Kit consists of the following parts:
= a protocol for implementing custom services
= an API for accessing the database and for submitting files to ECXpert

The following sections introduce these parts.

Custom Services

A custom service is an application or program that is called by ECXpert to
perform a specific task, such as moving a document to a directory outside of
ECXpert's control, sending e-mail to a user when a document is sent or
received, or preprocessing or translating a file in a custom way.

The chapter “Creating a Custom Service” on page 29 specifies language require-
ments and calling conventions for implementing a custom service. The chapter
also includes examples, which are written in Perl.

User-Defined Communications Service

A user-defined communications service is an application or program that is
called by ECXpert to deliver files after ECXpert has finished processing them.

The chapter “Creating a User-defined Communications Service” on page 43
explains how to implement a user-defined communications service.

ECXpert API

The ECXpert APIs allow you to manipulate the database outside of ECXpert.
You can manipulate database records in the following ways:

= add, retrieve, delete, and update membership records

« add, retrieve, and delete address records

20 Netscape ECXpert Site Administrator’s Handbook 02 July 99

ECXpert API

= add, retrieve, and change partnership-related records

= retrieve document records

= retrieve tracking records

= add log records

In addition, the API allows you to submit files for processing by ECXpert.

The API is available for C++. The chapters that describe the classes in the API
show C++ syntax and examples. Chapter 4, “Using the NAS ECXpert Submit
Extension” on page 51 describes the Java Submit API.

Use the SparkWorks C++ compiler, version 4.1 to compile the ECXpert SDK.

Important Changes to the ECXpert 2.0 SDK have made following classes backwards
incompatible:

= EcxDocument
= EcxLog

= EcxPartnership
= EcxSubmit

= EcxTracking

You must to rewrite any code you have written with these classes to reflect the
changes that have been made since the ECXpert 1.1.1 SDK. If you do not
rewrite your code, it will not compile.

Additionally, the following classes are new with ECXpert 2.0:
= EcxFtpClient()

= EcxService()

= EcxServicelList()

Special LDAP If you have LDAP enabled with ECXpert, in the [LDAP] section of the ecx.ini
Entry in ecx.ini file, set the cn parameter to ECX before you start using the ECXpert API. No
File harm is done if you fail to do this, but some false error messages may appear
when listing members using the SDK API.

02 July 99 Chapter 1, Introducing the ECXpert Software Developer’s Kit 21

ECXpert API

Most classes descend from the EcxBase class, which defines the
handling that is available in the class library.

Class Library

The following table provides a brief description of the classes:

error-

22 Netscape ECXpert Site Administrator’s Handbook

Table 1.1
Page

Class Defines No.

EcxAddr esses Trading address records. 158
EcxBase Base class for SDK. 102
EcxDocl D A document by its key. 231
EcxDocument Documents sent to ECXpert. 214
EcxFt pd i ent FTP Client API to send and receive documents via 263

FTP
Ecxl ni t An initialization object. 108
EcxLog Log records. 252
EcxLogi n User-login objects. 128
EcxMenmber Membership records 134
EcxPartnerl D A partnership by its key. 209
EcxPar t nershi p Partnership view-related records. 166
EcxServi ce Service records. 275
EcxSer vi celLi st Service list records. 291
EcxSubmi t Submission objects. 112
EcxTr acki ng Documents sent from ECXpert. 236
02 luly 99

02 July 99

ECXpert API

Relationship Between Objects and
Database Records

The following table shows classes whose objects each represent a record in a
database table:

Table 1.2
Described

Class Record in Table on page
EcxAddr esses MBAddresses 365
EcxDocument TrkDoc 388
EcxLog EventLog 398
EcxMenber Members 363
EcxPartnership Partnership view from the following tables:

Partnerships 366

PNDocs 368

PNGroup 372

PNStd 373
EcxTr acki ng TrkDoc 388

Note that objects of the EcxDocunent and EcxTr acki ng classes represent
the same kind of records. Objects of the EcxDocument class represent
documents that have been sent to ECXpert. Objects of the EcxTr acki ng class
represent documents that you have sent using ECXpert.

Database Access

Before you can use an object of any SDK class, you must create a single
Ecxl ni t object. Typically, you create the Ecxl ni t object in your program’s
mai n() function.

To access a record in the database or to add a record to the database, you must

Chapter 1, Introducing the ECXpert Software Developer’s Kit 23

ECXpert API

1. create an object that corresponds to the kind of record you want to manip-
ulate and

2. associate the object with an EcxLogi n object.

The EcxLogi n object specifies the user who is allowed to access the record. In
most cases, only users who are also administrators can add, change, or delete
records. Non-administrators can retrieve their own records; administrators can
retrieve any record.

When you access an object’s field, you are only accessing the in-memory value
for the field. The record in the database remains unchanged.

Using Lists

Most classes provide a Li st () method that you can use to retrieve records
that match a specific criteria. When you call the Li st () method, the first
record that matches the criteria is associated with the object and the record’s
fields populate the object. You call the Next() method to retrieve the next
record in the list; the newly retrieved record’s fields replace the previous values
in the object. You call the Mor e() method to determine if there are more
records in the list and, if desired, to count the remaining records. You can call
the Cl ear () method to reset the list. Calling the Cl ear () method also disas-
sociates the object with all records.

Error Handling

Methods that access the database may set result codes that you can access by
calling the object’s Er r num() method. You can also call the object’s

Err Msg() method to determine and, perhaps, display the cause. The
following codes are defined by the SDK:

Result Value Description

noEr r or 0 No error occurred.

unknownEr r or 1 An unspecified error occurred.
| ogi cError 2 Internal error.

24 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

not | npl enent ed

i nval i dAr gunment

out Of Mem

ar gunent Qut Of Range

uninitializedData

i nval i dval ue

i nval i dDat a

not FoundEr r

i nval i dRequest

m ssi ngDat a

securityException

i nval i dLogi n

12

13

17

21

22

27

60000

60001

ECXpert API

Internal error.

A required argument is missing or an argument
contains invalid data or improperly formatted data.

Insufficient memory to create an object.

An argument contains data that is not within the
allowable range of values.

An object has not been completely set up. For
example, this error occurs if you attempt to use an
EcxLogi n object that is not associated with a
valid user.

Invalid value.

Invalid date.

Record not found.

An action was attempted for which you do not
have permission; for example, when a non-
administrator attempts an action that can only be
performed by an administrator.

Missing data.

An action was attempted for which you do not
have permission; for example, when a non-
administrator attempts an action that can only be

performed by an administrator.

Invalid login.

In addition to the error codes defined by the SDK, additional errors codes can
be returned from the underlying database access functions. Database error
codes are in the range of 501 to 606, inclusive.

Chapter 1, Introducing the ECXpert Software Developer’s Kit 25

ECXpert API

Oracle Warnings When Compiling the
ECXpert SDK

If you are using Oracle8, release 8.0.4 or Oracle7, release 7.3.3.5, you will see a
series of warning messages when you compile the ECXpert SDK. These
warning messages appear to have no affect on the resulting compiled
executable.

Note If you are using Oracle7, release 7.3.4, you will not see these warning
messages.

If you are using Oracle8, release 8.0.4, when you compile the ECXpert SDK you
will see a series of warning messages, of which the first three should be similar
to the following:

I d: warning: synbol ‘osnttc’ has differing sizes:

(file /export2/actraadnm NS-apps/ ECXpert/lib/libecxsdkdbl0.so val ue=0Ox4c; file
/ export 2/ oracl e/ product/8.0.4/1ib/libclntsh.so val ue=0x74);

/ export 2/ actraadm NS- apps/ ECXpert/lib/libecxsdkdbl0.so definition taken

I d: warning: synbol ‘nstrcarray’ has differing sizes:

(file /export2/actraadnm NS-apps/ ECXpert/lib/libecxsdkdbl0.so val ue=Oxce4; file
/ export 2/ oracl e/ product/8.0.4/1ib/libclntsh.so val ue=0xde0);

/ export 2/ act raadm NS- apps/ ECXpert/1ib/libecxsdkdb10.so definition taken

I d: warning: synbol ‘nnfgtable’ has differing sizes:

If you are using Oracle?, release 7.3.3.5, when you compile the ECXpert SDK
you will see a series of warning messages, of which the first three should be
similar to the following:

I d: warning: symbol ‘nnfgtable’ has differing sizes:

(file /diskl/actraadm install 1/ NS-apps/ ECXpert/lib/libecxsdkdbl0.so val ue=0x30;
file /diskl/oracle7/wg7322/1ib/1ibclntsh.so val ue=0x40);

/ di sk1/ actraadm instal | 1/ NS- apps/ ECXpert/lib/libecxsdkdb10.so definition taken
I d: warning: synmbol ‘nls_global_|ock’ has differing sizes:

(file /diskl/actraadm install 1/ NS-apps/ ECXpert/1ib/libecxsdkdbl10.so val ue=0x20;
file /diskl/oracle7/wg7322/1ib/libclntsh.so val ue=0x28);

/ di sk1/ oracl e7/wg7322/1ib/libclntsh.so definition taken

I d: warning: symbol ‘nlstdgbl’ has differing sizes:

(file /diskl/actraadm install 1/ NS-apps/ ECXpert/lib/1ibecxsdkdbl0.so val ue=0x148;
file /diskl/oracle7/wg7322/1ib/libclntsh.so val ue=0x178);

/ di sk1/ oracl e7/wg7322/1ib/libclntsh.so definition taken

26 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Custom Reports

Custom Reports

ECXpert includes the Actuate Reporting System, which you can use create
custom reports. These reports access the ECXpert database directly using the
Select statement you specify to select records for your report. For information
about how to create custom reports, see “Customizing Reports” on page 307.
For information about the database schema that you use to specify the selection
criteria, see “ECXpert Database Schema” on page 347.

02 July 99 Chapter 1, Introducing the ECXpert Software Developer’s Kit 27

Custom Reports

28 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

Creating a Custom Service

his chapter describes how to write a program or script that you want to
install as a custom service. The following topics are covered:

e QOverview
= Language Requirements
« Call and Return Conventions

= Custom Service Examples

02 July 99 Chapter 2, Creating a Custom Service 29

Overview

Overview

A service list may include custom services. A custom service is an application
or program that is called by ECXpert to perform a specific task. Examples of
these tasks include:

= moving a document to a directory outside of ECXpert’s control
= sending e-mail to a user when a document is sent or received
= preprocessing or translating a file in a custom way

The following sections specify languages that you can use to implement a
custom service, the conventions that ECXpert follows to call your service, and
the conventions your service must follow when it returns. Several examples,
written in Perl, are provided to show how your program can receive and use
parameters passed to your service from ECXpert.

Language Requirements

Windows NT

Most custom services are written in compiled languages, such as C or C++, or in
scripting languages, such as csh, sh, or Perl. You can use any language that has
the following capabilities:

= accepts arguments from the command line
= supports file I/0

Because many languages provide these capabilities, your choice of the
language is most likely determined by the language’s suitablity to the task, its
ease of use, and site standards.

Under Windows NT 4.0, the custom service may not be a batch file. A simple
workaround is to use a Perl script. This is not an ECXpert limitation; NT 4.0
does not allow a background process like the ECXpert Dispatcher to start up an
executable that opens a foreground window. Starting up a batch file momen-
tarily opens a DOS window.

30 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Call and Return Conventions

Call and Return Conventions

A program that implements a custom service must follow ECXpert’'s conven-
tions for argument passing when the program is invoked. It must also follow
ECXpert’s conventions for returning from the program on termination.

When ECXpert calls a custom service it passes three arguments to the service.
The first argument is the full path name of a file that contains parameters that
control the operation of the service. This file is called the parameter
-specification file. The second argument is the full path name of a file that
contains the files on which the service executes. This file is called the
data-specification file. The third argument is the full path name of a file that
contains data to be passed from each custom service in a service list to subse-
quent custom services in the same service list. This file is called the custom
parameter file. The parameter-specification and data-specification files are
discussed in the following sections.

When the service returns, it must return a value of 0 if it performed all opera-
tions successfully. The service may return any non-zero value to indicate that
one or more operations did not succeed.

Warning If your custom service returns a non-zero value, ECXpert stops processing the
service list. You can view the status of the service and the service list by
checking the Event log in Activity Tracking.

The Parameter-specification File

When ECXpert calls your custom service, it passes the service a parameter-
specification file as the service’s first argument. This file contains the parameters
that may be used by the service. These parameters include the sender and
receiver’'s member IDs, the file type and path name of the document file. Each
parameter is identified by a two-letter keyword. Table 2.1 shows the keywords
and their descriptions

Table 2.1 Keyword parameters

Keyword Usage
SE Member ID of the sender.
RE Member ID of the sender recipient.

02 July 99 Chapter 2, Creating a Custom Service 31

Call and Return Conventions

Table 2.1 Keyword parameters

Keyword Usage

FN The full path name of the file.
FT The type of the file.

TI The file’s tracking ID.

The keyword is separated from the parameter’s value by an equal sign. Only
one keyword-value pair can appear on a single line in the parameter-specifi-
cation file. Keyword-value pairs can appear in any order within the file. Your
service must be able to handle all pairs, in any order, even if your program just
ignores the parameter. It must also be robust enough to handle missing
keyword-value pairs.

The following example shows the contents of a parameter-specification file.

TI =20

SE=Dant e

RE=Dash

FN=/ export/ hone/ actraadn act r a- hone/ Act r a- apps/ ECXpert/tnp/track/trk20
FT=EDI

In this example, the tracking ID is 20, the sender is Dante, the receiver is Dash,
the file name is / export/ hone/ act r aadnt act r a- hone/ Act r a- apps/ ECXpert / t np/
track/trk20, and the file type is EDI.

The Data-specification File

The data-specification file contains the files that ECXpert generates as part of its
translation process. For example, the data-specification file may contain files
such as these:

/ export/ home/ actraadn .../ Actra-apps/ ECXpert/ data/ out put/20-1-1-2. out?2
/ export/ home/ actraadm .../ Actra-apps/ ECXpert/data/out put/20-1-1-2.0out3
/ export/ home/ actraadn .../ Actra-apps/ ECXpert/data/ out put/20-1-1-1.out?2

/ export/ home/ actraadm .../ Actra-apps/ ECXpert/data/ out put/20-1-1-8.0out3
/ export/ home/ actraadni .../ Actra-apps/ ECXpert/data/ out put/20-1-1.997

32 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Example

Call and Return Conventions

The Custom Parameter File

In earlier versions of ECXpert, when ECXpert called a custom service it passed
only the parameter-specification file and the data-specification file.

In Netscape ECXpert Version 2.0, a new argument has been added—the full
path name of a file that contains data to be passed from any custom service in
a service list to subsequent custom services in the same service list. This file is
called the custom parameter file. As the custom parameter file passes through
the service list, it can be edited by any custom service in the service list.

The custom parameter file is automatically deleted upon completion of the
service list.

In Figure 2.1, a service list calls Custom Service A. Custom Service A then
passes the three parameters—the Parameter-specification filename, the Data-
specification filename, and the Custom Parameter filename—to Custom Service
B, and writes information to the Custom Service Parameter File. Custom Service
B reads the information from the the Custom Service Parameter File, and then
exits the service list. When the service list is exited, a log file is created.

Chapter 2, Creating a Custom Service 33

Call and Return Conventions

Figure 2.1 Custom Parameter File Diagram

Service
List
Custom
Service
A .
T writes
I%SSES:\>
ARGVI[0] = Parameter-specification File | ARGVI0] Custom
ARGV[1] = Data-specification File | ARGV[1] Parameter
ARGV[2] = Custom Parameter File | ARGV[2] File
vy ="
Custom
Service
B
Exit |og

file

Example Write Following is an example of a script that writes information to the Custom
Script parameter File. In the Figure 2.1, this script is would be used by Custom Service
A to write information to the Custom Parameter File:

#!/usr/local/tool s/bin/perl
File: custonBvr_Wite.pl
Custom service for ECXpert
Descri pti on:
This programtest out the custom service for ECXpert. It

basically print out to a log file the paraneters received
from ECXpert when the custom sevice is invoked.

HOH W R H R HH

34 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Call and Return Conventions

In addition to printing out the paranmeters, it also wite

a fewlines to the customservice file (argv 3) being

passed in by dispatcher. In v2.0 of ECXpert, it supports

a 3rd paraneter file to allow passing of information between
2 custom services.
#
#
#
#
$

$l ogFll e = pathnane of the log file for this service to output
logFile = "/tnp/custonSvr. dbg";
$paranfFile = $ARGV[O] ;

$dataFile = $ARGV[1];
$custonFil e = $ARGV[2] ;

open(LOGF, ">>$logFile") || die "Can’'t open log file\n";

print LOGF "--------- Custom Wite Service Start --------- \n";
printTi meToLog();

print basic file argument

print LOGF "Paraneter File (0): $paranFile\n";

print LOGF "Data File (1): $dataFile\n";

print LOGF "Custone File (2): S$custonFile\n";

print additional argunment if exist

foreach $i (3 .. $#ARGV) {
print LOGF "additional argunent ($i) : $ARGV[$i] \n";
}

print LOGF "\n";

print LOGF ">>> Paraneter File Content:\n";
printAsciiFile($paranfile);

print LOGF ">>> Data File Content:\n";
printAsciiFile($dataFile);

print LOGF ">>> Custom File Content:\n";
printAsciiFile($custonFile);

print LOGF ">>> End File Content\n";

print LOGF "\n";

print LOGF ">>> Witing to CustomFile\n";
writeAsciiData($custonFile, 1, 2);

print LOGF ">>> Finish Wite\n";

print LOGF ">>> New Custom File Content:\n";
printAsciiFile($custonFile);
print LOGF ">>> End File Content\n";

print LOGF "--------- Custom Wite Service End --------- \n";
cl ose(LOGF);
0;

02 July 99 Chapter 2, Creating a Custom Service 35

Call and Return Conventions

SRR

Subroutines

HHHHHHHHH

sub printTi meToLog {

| ocal ($sec, $m n, $hour, $nday, $non, $year, $wday, $yday, $i sdst) =
localtime(tine());

$non += 1;
print LOGF "Tine : $non/ $nday/ $year $hour: $m n: $sec\ n";
}

sub printAsciiFile {
| ocal ($dat aFil eNane) = @[0];
open(DATAFI LE, "$dat aFi | eName");
whi | e (<DATAFI LE>) {
$lineData = $_;
print LOGF $lineDat a;
}
cl ose(DATAFI LE) ;
}
sub writeAscii Dataf
(ny $outFil eNane, $argl, $arg2) = @;
open(DATAFI LE, ">>$outFileNanme") || die "Can't open custom data
file\n";
print DATAFILE "argunent 1 $argl\n";
print DATAFILE "argunent 2 = $arg2\n";
cl ose(DATAFI LE) ;
}Qutput File

Example Read Following is an example of a script that reads information from the Custom
Script parameter File. In the Figure 2.1, this script is would be used by Custom Service
B to read the Custom Parameter File:

#! /usr/ | ocal / t ool s/ bi n/ perl

#

File: custonSvr.pl

#

Custom service for ECXpert

#

Description:

This programtest out the custom service for ECXpert. It
basically print outs to a log file the paraneters received
from ECXpert when the custom sevice is invoked.

#

#

#

$

$l ogFll e = pathnane of the log file for this service to output

logFile = "/tnp/custonBvr. dbg";

$paranFile
$dat aFil e

$ARGV[0] ;
$SARGV[1] ;

36 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Call and Return Conventions

$custonFile = $ARGV] 2] ;

open(LOGF, ">>$logFile") || die "Can't open log file\n";
print LOGF "--------- Custom Service Start --------- \n";
printTi meToLog();

print basic file argunent

print LOGF "Paraneter File (0): $paranFile\n";
print LOG-F "Data File (1): $dataFile\n";
print LOGF "Custone File (2): S$custonFile\n";

print additional argunent if exist

foreach $i (3 .. $#ARGV) {
print LOGF "additional argunent ($i) : $ARGV[$i] \n";
}

print LOGF "\n";

print LOGF ">>> Paraneter File Content:\n";
printAsciiFile($paranFile);

print LOGF ">>> Data File Content:\n";
printAsciiFile($dataFile);

print LOGF ">>> Custom File Content:\n";
printAsciiFile($custonFile);

print LOG ">>> End File Content\n";

print LOGF "--------- Custom Service End --------- \n";
cl ose(LOGF);
0;

HHHHH A

Subroutines

R

sub printTineToLog {

| ocal ($sec, $m n, $hour, $nday, $non, $year, $wday, $yday, $i sdst) =
localtime(tine());

$non += 1;
print LOGF "Time : $non/ $nday/ $year $hour: $m n: $sec\ n";
}

sub printAsciiFile {
| ocal ($dat aFileNane) = @[0];
open(DATAFI LE, "$dat aFi | eNanme");
whi | e (<DATAFILE>) {
chop($_);
$lineData = $_;
print LOGF $lineDat a;
}
cl ose(DATAFI LE) ;

02 July 99 Chapter 2, Creating a Custom Service 37

Call and Return Conventions

Example Log File

Following is an example of the log file—/tmp/customSvr.dbg—that would be
created. In the Figure 2.1, this file would be generated when the service list is
exited.

--------- Custom Wite Service Start ---------

Time : 10/23/98 13:5:7

Parameter File (0): /diskl/actraadminstall 1/ NS-apps/ ECXpert/data/ work
ENVAAA2006zq- 28657- 0

Data File (1): [/diskl/actraadniinstall 1/ NS-apps/ ECXpert/data/work
LSTBAAa006zq- 28657-0

Custone File (2): /diskl/actraadniinstall 1/ NS-apps/ ECXpert/ dat a/ work
ARGCAAa006zq- 28657- 946

>>> Paraneter File Content:

Tl =946

SE=r av4

RE=escort

FN=/ di sk1/actraadn i nstal | 1/ NS- apps/ ECXpert/ dat a/ work/trk/trk946
FT=cust om

Rv=0

>>> Data File Content:

>>> Custom File Content:

>>> End File Content

>>> Witing to CustomFile

>>> Finish Wite

>>> New Custom Fi |l e Content:

argument 1 =1

argunent 2 = 2

>>> End File Content

--------- Custom Wite Service End ---------

--------- Custom Service Start ---------

Time : 10/23/98 13:5:8

Parameter File (0): /diskl/actraadminstall 1/ NS-apps/ ECXpert/data/ work
ENVDAAa006zr - 28657- 0

Data File (1): [/diskl/actraadniinstall 1/ NS-apps/ ECXpert/data/ work
LSTEAAa006zr - 28657-0

Custone File (2): /diskl/actraadniinstall 1/ NS-apps/ ECXpert/ dat a/ work
ARGCAAa006zq- 28657- 946

>>> Paraneter File Content:

Tl =946

SE=r av4

RE=escort

FN=/ di sk1/ actraadnm i nstal | 1/ NS- apps/ ECXpert/ dat a/ work/trk/trk946
FT=cust om

Rv=0

>>> Data File Content:

>>> Custom File Content:

argunment 1 =1

38 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Custom Service Examples

argunent 2 = 2
>>> End File Content
--------- Custom Service End ---------

Custom Service Examples

02 July 99

Your custom service can be divided into a function that parses command line
arguments and functions that perform the logic you want to implement. The
following examples show a Perl function that handles the command line and
Perl scripts that implement two services, a file-copy service and a submission
service.

Parsing Command Line Arguments

The following function parses the command line arguments. The function
opens the file specified in the first argument and decodes the keyword
arguments. It then opens the file specified in the second argument and creates
a list of file names. This function is called by the scripts that implement
services.

#! /usr/ | ocal / bi n/ per

The function places the file names fromthe second argunent into
an array called svcFiles.

This function is designed to be called by a script acting as

a service within a service list of ECXpert. It takes two paraneters
The first parameter is expected to be a filenane pointing to a file
that contains subm ssion information. The second paraneter is a

filename that points to a file containing a list of filenanes

that have been unbundl ed (possibly via translation) by ECXpert.

#

The function places the parsed values fromthe first file into an

associative array called svcArgs. The keys into the array are

#

sender - the sender of the docunent

receiver - the receiver of the docunent

trackingl D - the tracking id assigned to this docunent
fil eName - the fil ename

fileType - the type of the file

#

#

#

sub ServiceArgsParse() {

Chapter 2, Creating a Custom Service 39

Custom Service Examples

local (@rgv) = @;

This section of code opens the file pointed to by the first
paraneter and parses out the information.
open(META, $argv[0]) || die "\nError opening file $argv[0]\n";

while (<META>) {
chop($_);

if (/ATI=(.*)/)

if (/~SE=(.*)/)

$svcArgs{trackingl D} = $1; }
$svcArgs{sender} = $1; }

e e e Rt R

if (/"RE=(.*)/) $svcArgs{receiver} = $1; }
if (/"FN=(.*)/) $svcArgs{fil eName} = $1; }
if (/NFT=(.*)/) $svcArgs{fil eType} = $1; }

cl ose(META) ;

This section of code opens the file pointed to by the second
paraneter and places each file as an elenment in an array.

open(FI LELI ST, $argv[1]) || die "\nError opening file $argv[1]\n";

@vcFiles = <FILELI ST>;
chop(@vcFil es);

cl ose(FI LELI ST);

}
1

Note that Perl requires a non-zero return as the last line of a file that is required
by, meaning included in, another file.

Implementing a File-copy Service

The following script implements a file-copy service. The contents of files in the
data-specification file are appended together and their output is separated by a
delimiter. The first argument is not used except for printing the keyword values
as the first line of the output file.

#!/usr/l ocal / bin/perl

This script copies files fromECXpert to a directory. It may be
custom zed by nodifying the follow ng vari abl es:

be copi ed.
$del i et er - the delimter to be used between concatenated

#
#
#
S$targetDirectory - full path to the directory where the files should
#
#
files

40 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Custom Service Examples

$additionallnfo - if defined, will place the value of the variable
as the first line of the file.

$ACTRA_HOME = "/ export/hone/ actraadn actra- hone";
$ECX_HOVE = " $ACTRA_HOVE/ Act r a- apps/ ECXpert";

requi re "$ECX_HOVE/ cust om servi ces/ Servi ceArgsParse. pl *;
&Ser vi ceAr gsPar se(GARGV) ;

fia i i ia e e ia e s g i iaiaiciaiaid
begin user custom zable variables
fia e i i e ia e e e g s g i s aiaiaiaiiaid

$targetDirectory = "/tnp";

$del i meter = "--ECXpert--";

$addi tional Info = " <SE>$svcArgs{sender} </ SE>
<RE>$svcArgs{recei ver}</ RE>"
" <TlI >$svcArgs{trackingl D} </ Tl >";

B
end user customn zable variables
BHHHH TR

$targetFile = $targetDirectory . "/ECX-$svcArgs{tracki nglD}.dat";
open(COPYFI LE, ">$targetFile") || die "\nError opening $targetFile\n";

i f ($additionallnfo) {
print COPYFILE "$additionallnfo\n";

}
$arraylLength = scal ar(@vcFiles);
$i = 0;
foreach $file (@vcFiles) {
$i ++;

open(EACHFI LE, $file) || die "\nError opening $file\n";
print COPYFI LE <EACHFI LE>;
cl ose(EACHFI LE) ;

print COPYFILE "$delinmeter\n" if ($i < $arraylLength);
}

cl ose(COPYFI LE) ;
exit O;

Note that a custom service must return 0 to indicate that it succeeded.

02 July 99 Chapter 2, Creating a Custom Service 41

Custom Service Examples

Implementing a Submission Service

The following section implements a submission service. For example, if a file
has been submitted to ECXpert, this custom service resumbmits it, effectively
forwarding it to another recipient. In this example, all submissions are resub-
mitted to member ID “Dart.”

#! /usr/ | ocal / bi n/ perl

This script kicks off another subm ssion using informati on passed in
from ECXpert and the variabl es defined bel ow that shoul d be customn zed
for specific recipients:

#
$target Recipi ent - menber id where the docunent should be
forwarded to

$ACTRA_HOMVE = "/export/honme/ actraadnm actra- hone";
$ECX_HOMVE = "$ACTRA_HOME/ Act r a- apps/ ECXpert";

require "$ECX_HOMVE/ cust om servi ces/ Servi ceArgsParse. pl ";
&Ser vi ceAr gsPar se(GARGV) ;

TR R

begin user custom zable variables
T

$target Reci pient = "Dart";
TR

end user custom zable variables
B R

$comrand = "$ECX_HOVE/ bi n/ submt -se $svcArgs{receiver} ";
$command .= "-re $target Recipient -fn $svcArgs{fil eNane} ";
$command .= "-ft $svcArgs{fil eType} -in $ECX _HOVE/ confi g/ bdg.ini";

syst em($conmand) ;

exit 0O;

42 Netscape ECXpert Site Administrator’'s Handbook 02 July 99

Chapter

Creating a User-defined
Communications Service

his chapter describes how to write a program or script that you want to
install as a user-defined communications service. The following topics are
covered:

= Overview
= Modifying the Configuration File (ecx.ini)

= Writing a User-defined Communications Service

02 July 99 Chapter 3, Creating a User-defined Communications Service 43

Overview

Overview

Windows NT

A user-defined communications service is an application or program that is
called by ECXpert to deliver files after ECXpert has finished processing them.
ECXpert provides the following delivery methods for data:

- SMTP

- FTP

- GEIS FTP
- HTTP

You can provide a user-defined communications service to implement other
kinds of disposition methods.

Typically, a user-defined communications service operates on documents that
have been bundled into an interchange and are ready for delivery to an
external system or it operates on application data ready to be transmitted to
another internal host. Examples of tasks performed by a user-defined communi-
cations service include sending files via an in-house file transfer utility or
submitting the output from ECXpert into a PeopleSoft system.

You implement a user-defined communications service in two parts:

= Modify the configuration file to specify the location of the executable file,
titles for the service and its parameters, and to specify other configuration
information. ECXpert uses this specification to allow an administrator to set
up the service on the Trading Partnership Protocol screen.

= Write the service using a compiled language, such as C or C++, or a
scripting language, such as csh, sh, or Perl. The language must accept
arguments from the command line and support file 1/0.

Under Windows NT 4.0, the user-defined communications service may not be a
batch file. A simple workaround is to use a Perl script. This is not an ECXpert
limitation; NT 4.0 does not allow a background process like the ECXpert
Dispatcher to start up an executable that opens a foreground window. Starting
up a batch file momentarily opens a DOS window.

The following sections show you how to modify your configuration file and
write the service.

44 Netscape ECXpert Site Administrator’'s Handbook 02 July 99

Modifying the Configuration File (ecx.ini)

Modifying the Configuration File (ecx.ini)

The ecx.ini configuration file defines how ECXpert initiates the communica-
tions service. You must set up a user-defined communications section, as
discussed in “User-defined communications sections” on page 249. Below is a
sample user-defined communications section ecx.ini.

[user-defined-1]

section_type = network

type = process

cnd_and_args = /var/tnp/ CopyToServer. sh
append_data_file = 1

prefix_data_file =

cnd_type = script

operation = send

data_type = Both

i s_comm agent = yes

i nt ernal _nane USER DEFI NED 1

vi si bl e_name = Copy To Server

par anmet er _nane_1 Destination Directory
par armet er _nane_2 Destination File Pattern
par anmet er _nane_3 User

par anet er _nane_4 Host :

In this example, ECXpert calls CopyToServer in the /var/tmp/ directory to copy
application data. ECXpert appends the bundle file's full path name when it calls
the script. The following table explains each line in the configuration file:

Table 3.1
Line Description
[user-defined-1] A section name. The default is user - def i ned- 1.
section_type=network Type of section; must be net wor k.
type=process Type of executable; must be pr ocess.

02 July 99 Chapter 3, Creating a User-defined Communications Service 45

Modifying the Configuration File (ecx.ini)

Table 3.1

Line

Description

cmd_and_args=/var/tmp/
CopyToServer.sh

Full path to the executable for the user-defined com-
munication service and arguments, entered exactly as
you would enter them from the OS command line. In
this example, CopyToServer is not invoked with argu-
ments other than those passed as parameters.

The syntax for this line is as follows: (note that this
should appear all on one line in the ecx.ini file)

cnd_and_ar gs=<pat hnane?
<static_argunents> <data_fil ename>
<part nershi p_defi ned_ar gunent s>

Static arguments are hard-coded arguments, and part-
nership-defined arguments are arguments you can set
up via the partnership pages.

append_data_file=1

Whether to append the name of the data file to the end
of the cnd_and_ar gs line and the trading partner-
ship parameters. In this case, CopyToSer ver expects
the data file name to be appended.

prefix_data_file=

Prefix to add to the file name passed to the user-
defined communications service, for example f name=.
The bundle file name will be concatenated with the
prefix. In this example, no prefix is specified.

cmd_type = script

Type of command, valid values: scri pt (default), or
execut abl e. In this case, CopyToSer ver is a script.

operation = send

Type of communications operation involved. In this
example, the service sends data.

data_type = Both

Format of the data in the bundle. In this example, the
service sends data in an both EDI and application-spe-
cific format.

is_comm_agent = yes

Whether the protocol can be selected as a communica-
tions agent; must be yes.

internal_name
= USER DEFINED 1

The internal name that identifies the service. Do not
change this value. If you do, the service will not work.

46 Netscape ECXpert Site Administrator’'s Handbook

02 July 99

Modifying the Configuration File (ecx.ini)

Table 3.1
Line Description
visible_name Title that appears as a Primary Outgoing Protocol on

= Copy To Server

the Trading Partnership Protocol screen. In this exam-
ple, it is “Copy to Server.”

parameter_name_1
= Destination Directory:

Title for the first parameter. In this example, the first
parameter specifies the name of the destination direc-
tory on the server.

parameter_name_2

= Destination File Pattern:

Title for the second parameter. In this example, the
second parameter specifies the destination file pattern
on the server.

parameter_name_3
= User:

Title for the third parameter. In this example, the third
parameter specifies the name of the user on the server.

parameter_name_4
= Host:

Title for the fourth parameter. In this example, the
fourth parameter specifies the server.

The CopyToServer.sh script that is executed by this sample user-defined
communications service is shown below.

#! [bin/sh

#
Copy the file
#

retval =0
directory=${1}
pat t er n=${ 2}

r enot euser =${ 3}
r enot ehost =${ 4}
bundl ef i | e=${ 5}

suf fix="*echo $bundl efile | sed -e "s/*.*bndl//"""

/'bin/rcp ${bundl efil e}

${renot euser} @{renot ehost }: ${directory}/ ${pattern}. ${suffix} \
2>> [tnp/edi/id.log

if ["$?" I="0"]
t hen

retval = expr ${retval} +1°

fi

Chapter 3, Creating a User-defined Communications Service 47

Modifying the Configuration File (ecx.ini)

done
#
exit ${retval}

Important Notes Keep the following in mind when using this example to implement a user-
defined communications service:

= Do not add spaces between the variable names and their assignment
values. For example, this assignment works:

f name=${ 1}
while the one below does not:
fname = ${1}
= Any recipient user must have a file named .rhosts (e.g.,. /u/member2/.rhosts)
containing the following information:
host nane user

If act r aadmis the user, quasar is the host, and menber 2 is a recipient
user for the CopyToServer.sh script, then nermber 2 would need to have a
file named /u/member2/.rhosts containing the following:

quasar actraadm

Remember to include a domain suffix with the hostname (e.g.,
guasar . actracor p. com if the recipient’s machine is in a different
domain.

= ECXpert, when running your script, will source the .cshrc file in the remote
directory, not in the local directory. It is necessary to have lines similar to
the following near the beginning of the .cshrc file in the remote directory to
ensure proper execution.

#
Generic .cshrc
#

Set up a basic path here in case the script bonbs out
set env PATH /bin:/sbin:/usr/bin:/usr/sbhin

Set umask
umask 022

Skip rest of setup if not an interactive shel

if ($?pronpt == 0) exit
if ("$pronpt" == "") exit

48 Netscape ECXpert Site Administrator’'s Handbook 02 July 99

Writing a User-defined Communications Service

Writing a User-defined Communications

Service

02 July 99

The user-defined communications service accepts values for the parameters and
performs the specified task. The parameters are identified by their position as
they are passed to the service. This order is defined as follows:

1. parameters specified in the cnd_and_ar gs entry in its section of the
configuration file, in the order that they are listed in the entry

2. parameters specified in the configuration file, in order from
par armet er _name_1 to par anet er _name_n, where n is the last
parameter in its section of the configuration file

3. the bundle file name if the append_dat a_fi | e entry in its section of the
configuration file is set to 1

The following shell script is an example of a user-defined communications
service. It sets the return value to 0 to indicate success, retrieves the parameters
that the administrator specified when setting up the protocol, and performs the
copy operation. The parameters are

1. destination file
2. user ID
3. host name

4. full path name of the bundled file
#!/ bi n/ sh

#

Copy the file.

#

retval= 0

fname = ${1}

r enot euser

r enot ehost ${ 3}

bundl efile = ${4}

rdist -b -c ${bundlefile} ${renoteuser} @i{renotehost}:/tnp/${fnane} \
> /tnp/edi/id.log

if ["$?" I="0"]

t hen

${ 2}

Chapter 3, Creating a User-defined Communications Service 49

Writing a User-defined Communications Service

retval =" expr ${retval} + 1°
fi
done.
#
exit ${retval}

When the service returns, it must return a value of 0 if it performed all opera-
tions successfully. The service may return any non-zero value to indicate that
one or more operations did not succeed. If an error occurs, check the Event
log; the error number is in the log.

Warning If your custom service returns a hon-zero value, ECXpert stops processing the
service list.

50 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

Using the NAS ECXpert Submit
Extension

his chapter describes the NAS ECXpert extension, and explains how to
use the NAS ECXpert submit extension.

This chapter contains the following sections:
= About the NAS ECXpert Extension
= NAS ECXpert Extension Interfaces

= Using the NAS ECXpert Submit Extension

02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 51

About the NAS ECXpert Extension

About the NAS ECXpert Extension

Note to C++
programmers

Note

52 Netscape ECXpert Site Administrator’s Handbook

The NAS extension of ECXpert contains Java interfaces to ECXpert objects such
as member, member address, partnership, document, tracking, log, service,
service list, and submission. The extension is written in C++ with a Java
wrapper, so that a developer may design Java application logic to directly make
use of the extension to interface with the APIs in the ECXpert Software

Developer’s Kit (SDK).
An interface in Java functions exactly as a class in C++.

The interfaces and methods in the extension have an almost one-to-one
mapping to the classes and methods in the ECXpert SDK. Through this
extension, most of the ECXpert functionalitiy is exposed to any developer who
wishes to design applications using ECXpert as a platform. For example, it is
possible to use the NAS ECXpert extension to administer user and partnership
profiles, define services and service lists, submit documents into ECXpert and

track its workflow.

Figure 0.1 Interaction with ECXpert

r — — — 7
NAS'| gl |
| ; t |« ECXpert
=] o |8
| 3 |
U - —— _—
‘ . ECXpert
AppLOgIC Extension

The Java classes wrap around the C++ interfaces.

02 July 99

NAS ECXpert Extension Interfaces

NAS ECXpert Extension Interfaces

The following fourteen NAS ECXpert extension interfaces are available:

= IEcxAddress = IEcxMgr

= |EcxBase = |EcxPartnerld

« IEcxDocID = |EcxPartnership
= |EcxDocument = IEcxService

= IEcxLog = IEcxServiceList
= |EcxLogin = |EcxSubmit

= |EcxMember = |EcxTracking

This document explains only the NAS ECXpert submit extension in detail. For
more information about other functionality available via the NAS ECXpert API,
refer to the Netscape TradingXpert Getting Started Guide, version 2.0.

Using the NAS ECXpert Submit Extension

02 July 99

The | EcxSubmi t Interface defines methods that you use to submit a file to
ECXpert. You may use these methods to provide a file submission capability
within your application instead of requiring the user to execute a command or
use ECXpert's HTML interface to submit an object.

You may create objects from the | EcxSubmi t Interface and use them, directly
or you may define a subinterface of the | EcxSubni t Interface and create
objects from the derived interface. For example, you might define a
subinterface that handles much of the application logic associated with files to
be submitted to ECXpert. Objects derived from your subinterface would inherit
the ability to submit files to ECXpert.

You call methods to specify this information. For example, you call the object’s
set Sender () method to specify the sender’'s member ID. You must specify
the files that you wish to submit to ECXpert. You build a submission list by
calling the object’'s addFi | e() method to add a file to the list. You specify the
following information when you add a file:

e Document name

Chapter 4, Using the NAS ECXpert Submit Extension 53

Using the NAS ECXpert Submit Extension

Note

Note

= Document type, such as EDIFACT or EDIX12, or a non-EDI type

You may add as many files as you want. If you add more than one file, the files
become part of a single multi-part file. When you finish adding the files to the
submission list, you may call the object’'s Subni t () method to submit the files.

By default, ECXpert moves the files being submitted to the directory specified
by the reposi t ory entry in the configuration file's t cpi p- connect or section.
Moving a file (copying the file and deleting the source file after copying) is the
most efficient way to submit files if your application executes on the same
server as ECXpert.

You may also submit files to ECXpert using a TCP/IP connection. You specify
whether or not to use a TCP/IP connection when you call the object’s

submi t () method. Using a TCP/IP connection causes ECXpert to stream the

contents of the files through a socket to the server. This is a useful technique if
your application runs on a remote computer and the files being submitted are
relatively small. If you want to submit large files from a remote computer, you
should consider using a protocol such as FTP to copy the files to the server and
then submit them from the server.

If you wish to submit files to ECXpert from a remote system, you must:

= Edit the ECXpert system’s ecx.ini file [t cpi p- connect or] section as
follows:

— port_location=static

— admi n_port _type=manual

— admin_port=6001

— listener_port_type=nanual

— listener_port=6002

For more information on the ecx.ini file, see the ECXpert Site Adminis-
trator’s Handbook.

= Copy the edited ecx.ini file to the /bin directory in the NAS base directory
on the remote machine. This is the same directory where any NAS start-up
scripts are located.

If you stream data through a TCP/IP connection, the source file is not deleted
after the data has been streamed to the server.

54 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Warning

Name
Syntax

Methods

Using the NAS ECXpert Submit Extension

After you submit a file, you should check for errors. If no error occurred, you
may call the object’s get Fi r st Tr acki ngl D() method to determine the
tracking 1D of the first file submitted and the object’s get Next Tr acki ngl IX()
method to determine the tracking ID for each additional file in the list.

If the subni t () method fails, the value returned by calling the get Fi r st -
Tracki ngl () or get Next Tr acki ngl D() method is undefined. When you
no longer need references to these files, you may call the object’s cl ear -

Fi | eLi st () method to remove the files from the list.

Syntax and Methods

| EcxSubmi t
public interface IEcxSubmit extens com.kivasoft.IObject
Following is a list of methods in the | EcxSubmi t interface. For additional

details about each method, refer to Chapter 8, “The EcxSubmit Class.”

Methods

public int addFile(java.lang.String pFile,java.lang.String
pFi | eType)

public int clearFileList()

public java.lang. String getDeliveryMethod()
public java.lang. String get Ecxl ni Fi |l eNanme()
public int getFirstTrackingl D()

public java.lang. String get MapNane()

public java.lang. String get Reci pient()

publ i

c
c
c
c

public java.lang. String get Password()
c
c java.lang. String get Sender ()
c

public int getNextTrackingl D)

public int setDeliveryMethod(java.lang. String
pDel i ver yMet hod)

public int setEcxlniFileNane(java.lang. String plniFil eNane)
public int setMapNane(java.lang. String pMapNane)

Chapter 4, Using the NAS ECXpert Submit Extension 55

Using the NAS ECXpert Submit Extension

public int setPassword(java.lang. String pPassword)
public int setRecipient(java.lang.String pRecipient)
public int setSender(java.lang. String pSender)

public int submt(bool ean bDat aStream ng)
Note: The bDat aSt r eani ng parameter should be “true” if submitting to a remote
ECXpert system.

Example

WARNING This is a machine generated list, do not nodify bel ow
** W zardDi cti onaryVal ues={

** CodeTenpl at e="/ ki va/ t enpl at es/ Dol nput W zard. j avat npl ",

** CodeFi | es="*.j ava; Sessi on: Sessi onAccessor | nsert.java",

** CodeProj ect ="l nput ",

** CodeDi r ="/ ki val APPS/ ecx_deno/ ",

*x CodelLanguage="Java",

*x Sessi onQut =[

** "sender"

** "passwor d"

** "recipient"

*x "fil eNanme"

*x "fileType"

* % "ecxl ni Fi | eNane"
* %] ,

** BaseAgent =" ecx_deno. BaseApplLogi c",
** CodeW zar d="com ki vasoft.w zar d. Dol nput W zar dFact ory",
*x CodeFi | e="/ ki va/ APPS/ ecx_deno/ | nput . j ava",

*x I nput _fil ename="/ki va/ APPS/ DevXpert/web/ ecx_deno/
i ndex. htm ",

> CodeGUI D="{588779da- f 69c- 15e5- e4e3- 080020794ab3}",
*x Proj ect ="/ ki val APPS/ ecx_deno/ ecx_deno. gxni,
** Val | n={ com ki vasoft.tool s. KSVect or Hash

** Val | n=[

> "sender"

*x " passwor d"
*x "recipient"”
> "fil eName"

56 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the NAS ECXpert Submit Extension

*x "fileType"

* % "ecxl ni Fi | eNane"
** "renot eSubm ssi on"
* %]1

** Val | n_Not Nul I =[

** "true"

** "true"

** "true"

** "true"

** "true"

** "true"

** "true"

* %],

* % },

* % }

** WARNING This is a nachine generated list, do not nodify
above

*/

package ecx_denwv;

i mport java.util.?*;

i mport com ki vasoft.*;

i nport com ki vasoft. appl ogi c. *;
i nport com ki vasoft. session. *;
i mport com ki vasoft.types.*

i mport com kivasoft.util.*;

i nport ecx_deno. Sessi on

i nport ecx_denp. BaseApplLogi c;

i mport ecx.*;

public class Input extends ecx_denp. BaseAppLogic

{

public String guid()
{

02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 57

Using the NAS ECXpert Submit Extension

return "{588779da- f 69c- 15e5- e4e3- 080020794ab3}";

public int execute()

{

ecx_deno. Sessi on sessi on = get Sessi onProxy();

if (session == null) {
return result("<HTM.>Cal | to get Sessi onProxy() failed
in I nput</HTM.>");

}

I

/1 Verify correctness of valln criteria

11

String sender = valln.getVal String("sender");

if (null == sender ||
0 == sender.trim).length())

I og(" I nput error on sender");

return result("<HTM.><BODY>sender shoul d not be
nul I ! </ BODY></ HTML>") ;

}

String password = val I n.getVal String("password");

if (null == password ||
0 == password.trim().length())

| og(" I nput error on password");

return result (" <HTM.><BODY>password shoul d not be
nul I ! </ BODY></ HTML>") ;

}

String recipient = valln.getVal String("recipient");

if (null == recipient ||
0 ==recipient.trim).length())

[og("Input error on recipient");

58 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Using the NAS ECXpert Submit Extension

return result (" <HTM.><BODY>r eci pi ent shoul d not be
nul I ! </ BODY></ HTML>") ;

}
String fileNane = val In.getVal String("fil eName");

if (null == fileNane ||
0 == fileNanme.trim().length())

I og(" I nput error on fileNane");
return result("<HTM.><BODY>fi | eName shoul d not be
nul I ! </ BODY></ HTML>") ;

}
String fileType = valln.getVal String("fileType");

if (null == fileType ||
0 == fileType.trim().length())

log("Input error on fileType");
return result("<HTM.><BODY>fi | eType shoul d not be
nul I ! </ BODY></ HTML>") ;
}

String ecxlniFileNanme =
val I n. get Val String("ecxlniFil eNane");

if (null == ecxlniFileNane ||
0 == ecxIniFileName.trin().length())

I og(" I nput error on ecxlniFil eNanme");
return resul t ("<HTM.><BODY>ecxI ni Fi | eNane shoul d not
be nul I'! </ BODY></ HTML>") ;
}

String renoteSubm ssion =
val I n. get Val String("renoteSubni ssion");

if (null == renoteSubm ssion ||
0 == renpteSubm ssion.trim).length())

[og("I nput error on renoteSubmni ssion");

return result (" <HTM.><BODY>r enpt eSubm ssi on shoul d
not be nul |!</BODY></ HTM.>");

Chapter 4, Using the NAS ECXpert Submit Extension 59

Using the NAS ECXpert Submit Extension

I

/1 Save login criteria into the session.

I

sessi on. set sender (val I n. get Val String("sender"));

sessi on. set password(val I n. get Val String("password"));
session. setrecipient(val In.getVal String("recipient"));
session.setfileNane(val In.getVal String("fileNane"));
session.setfileType(valIn.getVal String("fileType"));

sessi on. set ecxl ni Fi |l eName(val | n. get Val String("ecxlni Fi |l eNane"))

sessi on. saveSessi on();

/1 Get the extension
| EcxMgr ecxMygr = access_cECX. get cECX(context, nul |, this);
| EcxSubmit ecxSubnmit = ecxMyr.createSubmt();

Systemout.println("Got the extension...");

ecxSubni t. set Sender (sender) ;

ecxSubni t. set Reci pi ent (reci pi ent);

ecxSubni t. set Passwor d(password) ;

ecxSubnit. addFil e(fil eNane, fileType);
ecxSubni t. set EcxI ni Fi | eName(ecx| ni Fi | eNane) ;

Systemout.println("Set all paraneters...");

bool ean renot e;

i f (renoteSubm ssion.equal s("yes"))
renote = true;

el se
renbte = fal se;

ecxSubnit.subm t(renote);

/]l Return screens
if (((lEcxBase)ecxSubmt).errnum) == 0)

60 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the NAS ECXpert Submit Extension

String successString = "Subm ssion successful, the file's
ECXpert tracking IDis " + ecxSubmt.getFirstTrackinglD() + ".";

return streanResul t (successString);

}

el se

{

String errorString = "Submission failed, error nunmber
+ ((| EcxBase) ecxSubmit).errnun() + ".";

return streamResult(errorString);

} /] execute

} Il class

02 July 99 Chapter 4, Using the NAS ECXpert Submit Extension 61

Using the NAS ECXpert Submit Extension

62 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Chapter

The ECXpert XML SDK

his chapter describes the ECXpert XML software developer kit (SDK). The
following topics are covered:

e QOverview

Directory Structure and Source Files
e CXIP_MSG Class Reference

= CXxsMSG Class Reference

= CXxsDOM Class Reference

= CXIPInit Class Reference

= CXIPConnection Class Reference

= CXIPListener Class Reference

= CXSubmit Class Reference

= Examples

Chapter 5, The ECXpert XML SDK 63

Overview

Overview

The ECXpert XML SDK provides a set of C++ Class APIs for users to build appli-
cations communicating with eXML-Connector through XML-formatted
messages. The SDK library also includes APIs to allow user applications to
listen to a port and/or connect to a (host, port) for message exchanges. There
are some samples that illustrate how to build a simple server and client
programs. There is also a utility that allows easy submission of document to the
eXML-Connector.

The eXML-Connector works as another (generic) communications agent in the
ECXpert architecture. In the outbound (with respect to ECXpert) process at the
transportation/Gateway stage, the document details are propagated to the
eXML-Connector by a NSPkt. The eXML-Connector determines what to do with
the document based on the information contained in NSPkt. It translates NSPkt
info. into an XML-formatted message (XFM), and passes it to the specified
service. This service can reside anywhere on the network, and the eXML-
Connector interacts with it using XFM.

In the inbound transaction, any XML-based application can send a submission
or service request to ECXpert, based on XFM. This request is intercepted by the
eXML-Connector, which passes on the ECXpert internals.

Directory Structure and Source Files

The XML SDK directory ($NSBASE/NS-apps/ECXpert/xmlsdk) in the ECXpert
directory tree includes required libraries, header files, and some sample
programs. These are listed in .

Table 5.1 ECXpert XML SDK directory contents

Subdirectory or File Description of Contents
$NSBASE/NS-apps/ECXpert/ The utility for use to submit a document to eXML
bin/xmlisbmt Connector

xmlsdk The XML SDK root directory

xmisdk/bin The SDK binary directory

xmisdk/config The XML SDK configuration directory
xmisdk/config/xmlserver.ini the configuration file for sample program xmlserver

64 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Directory Structure and Source Files

Table 5.1 ECXpert XML SDK directory contents (Continued)

Subdirectory or File

Description of Contents

xmisdk/example

xmisdk/example/Make-
file.{platform}

xmlsdk/example/xmicli-
ent.cpp

xmlsdk/example/
xmlserver.cpp

xmlsdk/example/xmisub-
mit.cpp

xmlsdk/include
xmlsdk/include/cxbase.h
xmlsdk/include/cxipconn.h
xmisdk/include/cxipinit.h
xmisdk/include/cxiplsnr.h
xmisdk/include/cxipmsg.h
xmlsdk/include/cxsbmt.h
xmlsdk/include/cxtypes.h
xmlsdk/include/cxxsdom.h
xmisdk/include/cxxsmsg.h
xmisdk/include/xmlparser

xmlisdk/include/xmlparser/
xmlparse.h

xmlsdk/lib
xmlsdk/lib/libecxmlcxbase.a
xmlsdk/lib/libecxmlcxcs.a
xmlsdk/lib/libecxmlcxsdk.a
xmlsdk/lib/libecxmlcxus.a
xmlsdk/lib/libecxmlcxxs.a

xmlsdk/lib/libecxmlxml.a

The XML SDK example directory
The Makefile sample file

The xmilclient sample program

The xmlserver sample program

The xmlsubmit sample program

The XML SDK include directory

XML SDK header file

XML SDK header file for CXIPConnection class
XML SDK header file for CXIPInit class
XML SDK header file for CXIPListener class
XML SDK header file for CXIP_MSG class
XML SDK header file for CXSubmit class
XML SDK header file

XML SDK header file for CXxsDOM class
XML SDK header file for CXxsMSG class
The XML SDK xmlparser include directory
The XML SDK xmlparser header file

The XML SDK library directory
XML SDK library file
XML SDK library file
XML SDK library file
XML SDK library file
XML SDK library file
XML SDK xmlparser library file

Chapter 5, The ECXpert XML SDK 65

CXIP_MSG Class Reference

CXIP_MSG Class Reference

Interface c¢xi pnsg. h
Superclasses CXxsMSG CXxsDOM
Subclasses None

Syntax class CXIP_MSG : public CXxsMsG { ... };

Constructor and Destructor

CXIP_MSG()

Creates a CXI P_MSG object.
Syntax CXIP_MsG : CXI P_MBE) ;
Parameters None.
Creates a CXI P_MSG object undefined content.

Syntax CXI P_MsG : CXI P_MBG const char *doc, const char *dtd =
CXlI P_MSG _DTD) ;

Parameters The CXI P_M5G) method has the following parameters:

doc the document
dtd the dtd, pass " (empty string) if dtd is already embedded in
document

Creates a CXI P_MSG object given the document and DTD.
Syntax CXI P_MsG : CXI P_MBG const char *doc, int opt = 0);
Parameters The CXI P_M5E) method has the following parameters:

doc the XML document including needed DTD
opt the option, which can be OR’ed from the following option:

« CXXS_OPT_DELETEDOC - delete the XML message once the
internal DOM object tree is formatted after the parsing

66 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Syntax

Parameters

Syntax

CXxsMSG Class Reference

Creates a CXI P_MSG object given the content from the given object.
CXI P_MSG: : CXI P_MSG(CXI P_MBG& obj) ;
The CXI P_MSG) method has the following parameter:

obj the object to copy from

~CXIP_MSG()

Destroys a CXI P_NSG object.

virtual ~CXIP_MSX);

CXxsMSG Class Reference

Interface
Superclasses
Subclasses

Syntax

Syntax

02 July 99

cxxsmsg. h
CXxsDOM
CXl P_MsG

cl ass CXxsM5G : public CXxsDOM { ... };

Constructor and Destructor

CXxsMSG()

Creates a CXxsMSG object.

Not intended to be used directly.

~CXxsMSG()

Destroys a CXxsMSG object.

Chapter 5, The ECXpert XML SDK 67

CXxsMSG Class Reference

Syntax

Syntax

Parameters

Returns

Syntax

Parameters

Returns

Not intended to be used directly.

Methods

This section lists the methods of the CXxsMSG class.

GetMSGTYPE()

Gets the MSGTYPE attribute from the CONTROL section in the CXIP message.
i nt CXxsMSG : Get MSGTYPE(char **v, int allocstr = 0);
The Get MSGTYPE() method has the following parameters:

v pointer to the MSGTYPE string pointer

al l ocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

0 when successful; -1 otherwise.

GetSERVICE()

Gets the SERVICE attribute from the CONTROL section in the CXIP message.
i nt CXxsMSG : Get SERVI CE(char **v, int allocstr = 0);
The Get SERVI CE() method has the following parameters:

v pointer to the SERVICE string pointer

al l ocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

0 when successful; -1 otherwise.

GetTIMEOUT()

Gets the TIMEOUT attribute from the CONTROL section in the CXIP message.

68 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXxsMSG Class Reference

Syntax int CXxsMSG : Get TI MEQUT(I ong *V);
Parameters The Get TI MEQUT() method has the following parameters:

v pointer to the TIMEOUT value

al l ocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

Returns 0 when successful; -1 otherwise.

GetRETRIES()

Gets the RETRIES attribute from the CONTROL section in the CXIP message.
Syntax int CXxsMSG : Get RETRI ES(| ong *V);
Parameters The Get RETRI ES() method has the following parameter:

Y pointer to the RETRIES value

Returns 0 when successful; -1 otherwise.

GetSTATUS()

Gets the STATUS attribute the CONTROL section in from the CXIP message.
Syntax int CXxsMsSG : Get STATUS(| ong *Vv);
Parameters The Get STATUS() method has the following parameter:

Y pointer to the STATUS value

Returns 0 when successful; -1 otherwise.

GetSENDER()

Gets the SENDER attribute from the PREDEFINED MONITOR section in the
CXIP message.

02 July 99 Chapter 5, The ECXpert XML SDK 69

CXxsMSG Class Reference

Syntax

Parameters

Returns

Syntax

Parameters

Returns

Syntax

Parameters

Returns

i nt CXxsMSG : Get SENDER(char **v, int allocstr = 0) ;
The Get SENDER() method has the following parameters:

v pointer to the SENDER string pointer

al l ocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

0 when successful; -1 otherwise.

GetRECEIVER()

Gets the RECEIVER attribute from the PREDEFINED MONITOR section in the
CXIP message.

i nt CXxsMSG : Get RECElI VER(char **v, int allocstr = 0);
The Get RECEI VER() method has the following parameters:

Y pointer to the RECEIVER string pointer

al l ocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

0 when successful; -1 otherwise.

GetTIMESTAMP()

Gets the TIMESTAMP attribute from the PREDEFINED MONITOR section in the
CXIP message.

int CXxsMSG : Get TI MESTAMP(char **v, int allocstr = 0);
The Get TI MESTAMP() method has the following parameters:

v pointer to the TIMESTAMP string pointer

al l ocstr flag indicating whether to allocate a space for the returned
value, or simply point to the object private data

0 when successful; -1 otherwise.

70 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXxsMSG Class Reference

GetCONTROL()

Gets the CONTROL section object from the CXIP message.
Syntax int CXxsMBG : Get CONTROL(CXxsQhj *obj);
Parameters The Get CONTROL() method has the following parameter:

obj the found control object

Returns 0 when successful; -1 otherwise.

GetMONITOR()

Gets the PREDEFINED MONITOR section object from the CXIP message.
Syntax int CXxsMBG : Get MONI TOR(CXxsQhj *obj);
Parameters The Get MONI TOR() method has the following parameter:

obj the found predefined monitor object

Returns 0 when successful; -1 otherwise.
Gets the USRDEFINED MONITOR section object from the CXIP message.
Syntax int CXxsMBG : Get MONI TOR(const char *n, CXxsQhj *obj);
Parameters The Get MONI TOR() method has the following parameters:
n the name of the (user-defined) monitor section

obj the found monitor object

Returns 0 when successful; -1 otherwise.

GetPredefinedMONITOR()

Gets the PREDEFINED MONITOR section object from the CXIP message.

Syntax int CXxsMSG : Get Predefi nedMONI TOR(CXxsObj *obj);

02 July 99 Chapter 5, The ECXpert XML SDK 71

CXxsMSG Class Reference

Parameters

Returns

Syntax

Parameters

Syntax

Parameters

Syntax

Parameters

Returns

The Get Predefi nedMONI TOR() method has the following parameter:

obj the found predefined monitor object

0 when successful; -1 otherwise.

GetUsrDefinedMONITOR()

i nt CXxsMSG: : Get Usr Def i nedMONI TOR(CXxsQhj *obj) ;
Gets the first USRDEFINED MONITOR section object from the CXIP message.
The Get Usr Def i nedMONI TOR() method has the following parameter:

obj the found monitor objec

i nt CXxsMSG: : Get Usr Def i nedMONI TOR(CXxsChj pobj, CXxsOhj *obj);
Gets the next USRDEFINED MONITOR section object from the CXIP message.
The CxxsM5@&) method has the following parameters:

pobj the current monitor object
obj the found monitor object

i nt CXxsMSG : Get Usr Def i nedMONI TOR(const char *n, CXxsQhj *obj);

Gets the named USRDEFINED MONITOR section object from the CXIP
message.

The Get Usr Def i nedMONI TOR() method has the following parameters:
n the name of the monitor object

obj the found monitor object

0 when successful; -1 otherwise.

GetINPUT()

Gets the first INPUT object from the DATA section in the CXIP message.

72 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXxsMSG Class Reference

Syntax int CXxsMSG : Get | NPUT(CXxsCbhj *obj) ;
Parameters The Get | NPUT() method has the following parameter:

obj the found input object

Gets the next INPUT object from the data section in the CXIP message.
Syntax int CXxsMBG : Get | NPUT(CXxsCbj pobj, CXxsChj *obj);
Parameters The Get | NPUT() method has the following parameters:

pobj the current input object
obj the found input object

Gets the named INPUT object from the data section in the CXIP message.
Syntax int CXxsMSG : Get | NPUT(const char *n, CxXxsChj *obj);
Parameters The Get | NPUT() method has the following parameters:

n the name of the input object
obj the found input object

Gets the named INPUT value from the data section in the CXIP message.
Syntax int CXxsMBSG : Get | NPUT(const char *n, int *v);
Parameters The Get | NPUT() method has the following parameters:

n name of the input object
v pointer to the input value

Gets the named INPUT value from the data section in the CXIP message.

Syntax int CXxsMBG : Get| NPUT(const char *n, char **v, int allocstr =
0);

02 July 99 Chapter 5, The ECXpert XML SDK 73

CXxsMSG Class Reference

Parameters The Get | NPUT() method has the following parameters:

n name of the input object
v pointer to the pointer of input value string
al l ocstr flag indicating whether to allocate a space for the returned

value, or simply point to the object private data

Returns 0 when successful; -1 otherwise.

GetOUTPUT()

Gets the first OUTPUT object from the DATA section in the CXIP message.
Syntax int CXxsMBG : Get OQUTPUT(CXxsOhj *obj);
Parameters The Get QUTPUT() method has the following parameter:

obj the found output object

Gets the next OUTPUT object from the data section in the CXIP message.
Syntax int CXxsMSG : Get OQUTPUT(CXxsObj pobj, CXxsCbj *obj);
Parameters The Get QUTPUT() method has the following parameters:

pobj the current output object
obj the found output object

Gets the named OUTPUT object from the data section in the CXIP message.
Syntax int CXxsMSG : Get QUTPUT(const char *n, CXxsObj *obj);
Parameters The Get QUTPUT() method has the following parameters:

n the name of the output object
obj the found output object

Gets the named OUTPUT value from the data section in the CXIP message.

Syntax int CXxsMBG : Get QUTPUT(const char *n, int *v);

74 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXxsMSG Class Reference

Parameters The Get QUTPUT() method has the following parameters:

n name of the output object
v pointer to the output value

Gets the named OUTPUT value from the data section in the CXIP message.

Syntax int CXxsMSG : Get QUTPUT(const char *n, char **v, int allocstr =
0);

Parameters The Get QUTPUT() method has the following parameters:

n name of the output object
v pointer to the pointer of output value string
al l ocstr flag indicating whether to allocate a space for the returned

value, or simply point to the object private data

Returns 0 when successful; -1 otherwise.

SetCONTROL()

Sets the specified attribute in the CONTROL section for a CXIP message.
Syntax int CXxsMSG : Set CONTROL(const char *n, long v);
Parameters The Set CONTROL() method has the following parameters:

n the name of the attribute
\Y; the attribute value

Sets the specified attribute in the CONTROL section for a CXIP message.
Syntax int CXxsMSG : Set CONTROL(const char *n, const char *v);
Parameters The Set CONTROL() method has the following parameters:
n the name of the attribute

Y, the attribute value

Returns 0 when successful; -1 otherwise.

02 July 99 Chapter 5, The ECXpert XML SDK 75

CXxsMSG Class Reference

SetMSGTYPE()

Sets the MSGTYPE attribute in the CONTROL section for a CXIP message.
Syntax int CXxsMSG : Set MSGTYPE(const char *v);
Parameters The Set MSGTYPE() method has the following parameter:

v the MSGTYPE value

Returns 0 when successful; -1 otherwise.

SetSERVICE()

Sets the SERVICE attribute in the CONTROL section for a CXIP message.
Syntax int CXxsMSG : Set SERVI CE(const char *v);
Parameters The Set SERVI CE() method has the following parameter:

v the SERVICE value

Returns 0 when successful; -1 otherwise.

SetTIMEOUT()

Sets the TIMEOUT attribute in the CONTROL section for a CXIP message.
Syntax int CXxsMsG : Set TI MEQUT(| ong V) ;
Parameters The Set TI MEQUT() method has the following parameter:

\Y; the TIMEOUT value

Returns 0 when successful; -1 otherwise.

76 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Parameters

Returns

Syntax

Parameters

Returns

Syntax

Parameters

Returns

CXxsMSG Class Reference

SetRETRIES()

Sets the RETRIES attribute in the CONTROL section for a CXIP message.
int CXxsMSG : Set RETRI ES(| ong V) ;
The Set RETRI ES() method has the following parameter:

v the RETRIES value

0 when successful; -1 otherwise.

SetSTATUS()

Sets the STATUS attribute in the CONTROL section for a CXIP message.
i nt CXxsMSG : Set STATUS(I ong V) ;
The Set STATUS() method has the following parameter:

v the STATUS value

0 when successful; -1 otherwise.

SetPreDefinedMONITOR()

Sets the specified attribute in the PREDEFINED MONITOR section for a CXIP
message.

i nt CXxsMsSG : Set Pr eDefi nedMONI TOR(const char *n, const char *v);
The Set Pr eDef i nedMONI TOR() method has the following parameters:
n the name of the attribute

v the attribute value

0 when successful; -1 otherwise.

Chapter 5, The ECXpert XML SDK 77

CXxsMSG Class Reference

Syntax

Parameters

Returns

Syntax

Parameters

Returns

Syntax

Parameters

Returns

SetSENDER()

Sets the SENDER attribute in the PREDEFINED MONITOR section for a CXIP
message.

i nt CXxsMSG : Set SENDER(const char *v);
The Set SENDER() method has the following parameter:

v the SENDER attribute value

0 when successful; -1 otherwise.

SetRECEIVER()

Sets the RECEIVER attribute in the PREDEFINED MONITOR section for a CXIP
message.

i nt CXxsMSG : Set RECElI VER(const char *v);
The Set RECEI VER() method has the following parameter:

v the RECEIVER attribute value

0 when successful; -1 otherwise.

SetTIMESTAMP()

Sets the TIMESTAMP attribute in the PREDEFINED MONITOR section for a
CXIP message.

i nt CXxsMSG : Set TI MESTAMP(const char *v);
The Set TI MESTAMP() method has the following parameter:

Y, the TIMESTAMP attribute value

0 when successful; -1 otherwise.

78 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXxsMSG Class Reference

SetUsrDefinedMONITOR()

Sets the specified attribute in the USRDEFINED MONITOR section for a CXIP
message.

Syntax int CXxsMSG : Set Usr Def i nedMONI TOR(const char *n, const char *v);
Parameters The Set Usr Def i nedMONI TOR() method has the following parameters:

n the name of the attribute
\Y; the attribute value

Returns 0 when successful; -1 otherwise.

SetINPUT()

Sets the specified input variable in the DATA section for a CXIP message.
Syntax int CXxsMSG : Set| NPUT(const char *n, const char *v);
Parameters The Set | NPUT() method has the following parameters:

n the name of the input variable

v the variable value

Sets the specified input attribute in the DATA section for a CXIP message.
Syntax int CXxsMSG : Set| NPUT(const char *n, const char *g, long v);
Parameters The Set | NPUT() method has the following parameters:

n the name of the input variable
the attribute name
the attribute value

Sets the specified input attribute in the DATA section for a CXIP message.

Syntax int CXxsMSG : Set| NPUT(const char *n, const char *g, const char
*V);

02 July 99 Chapter 5, The ECXpert XML SDK 79

CXxsMSG Class Reference

Parameters The Set | NPUT() method has the following parameters:

n the name of the input variable
the attribute name
the attribute value

Returns 0 when successful; -1 otherwise.

SetOUTPUT()

Sets the specified output attribute in the DATA section for a CXIP message.
Syntax int CXxsMSG : Set QUTPUT(const char *n, const char *g, long v);
Parameters The Set QUTPUT() method has the following parameters:

n the name of the output variable
the attribute name
the attribute value

Sets the specified output attribute in the DATA section for a CXIP message.

Syntax int CXxsMSG : Set QUTPUT(const char *n, const char *g, const char
*V);

Parameters The Set QUTPUT() method has the following parameters:

n the name of the output variable
g the attribute name
the attribute value

Returns 0 when successful; -1 otherwise.

CreateMSG()

Starts creating a CXIP message.

Syntax int CXxsMSG : Creat eMs@E const char *n, const char *v);

80 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXxsMSG Class Reference

Parameters The Creat eM5§) method has the following parameters:

n the name of the message; must be CXI P_MSG
Y, the version of the message; must be 1. 0

Returns 0 when successful; -1 otherwise.

CreateCONTROL()

Creates the CONTROL section for a CXIP message.
Syntax int CXxsMSG : Creat eCONTROL(const char *m const char *s);
Parameters The Creat eCONTROL() method has the following parameters:

m the value of MSGTYPE attribute
s the value of SERVICE attribute

Returns 0 when successful; -1 otherwise.

CreateTIMEOUT()

Creates the TIMEOUT attribute value in the CONTROL section for a CXIP
message.

Syntax int CXxsMSG : Creat eTl MEOUT(I ong V) ;
Parameters The Cr eat eTI MEOUT() method has the following parameter:

Y, the value of TIMEOUT attribute

Returns 0 when successful; -1 otherwise.

CreateRETRIES()

Creates the RETRIES attribute value in the CONTROL section for a CXIP
message.

Syntax int CXxsMSG : Creat eRETRI ES(| ong V) ;

02 July 99 Chapter 5, The ECXpert XML SDK 81

CXxsMSG Class Reference

Parameters

Returns

Syntax

Parameters

Returns

Syntax

Parameters

Returns

The Creat eRETRI ES() method has the following parameter:

v the value of RETRIES attribute

0 when successful; -1 otherwise.

CreateSTATUS()

Creates the STATUS attribute value in the CONTROL section for a CXIP
message.

i nt CXxsMSG : Creat eSTATUS(I ong V) ;
The Cr eat eSTATUS() method has the following parameter:

Y, the value of STATUS attribute

0 when successful; -1 otherwise.

CreatePreDefinedMONITOR()

Creates the PREDEFINED MONITOR section for a CXIP message.

i nt CXxsMSG : Cr eat ePreDef i nedMONI TOR(const char *s, const char
*r, const char *t = 0);

The Cr eat ePr eDef i nedMONI TOR() method has the following parameters:

s the value of SENDER attribute
r the value of RECEIVER attribute
t the value of TIMESTAMP attribute; passing zero value causes it

to be created internally using current time

0 when successful; -1 otherwise.

CreateUsrDefinedMONITOR()

Creates create the USRDEFINED MONITOR section for a CXIP message.

82 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Syntax

Parameters

Returns

Syntax

Parameters

Returns

Syntax

02 July 99

CXxsMSG Class Reference

i nt CXxsMSG : Cr eat eUsr Def i nedMONI TOR(const char *n, const char
*t, const char *v);

The Cr eat eUsr Def i nedMONI TOR() method has the following parameters:

n the value of NAME attribute
t the value of TYPE attribute
Y, the value of the data

0 when successful; -1 otherwise.

CreateINPUT()

Creates the INPUT variable in the DATA section for a CXIP message.

i nt CXxsMSG : Creat el NPUT(const char *n, const char *t, const
char *v, int opt = 0);

The Cr eat el NPUT() method has the following parameters:

n the value of NAME attribute

t the value of TYPE attribute

v the value of the data

opt the option, which can be OR’ed from the following options:

= CXXS_OPT_KEEPIT - use the string directly; do not duplicate
another copy internally

« CXXS_OPT_FREE - use free() instead of del et e to
release the string

0 when successful; -1 otherwise.
Creates the INPUT variable in the DATA section for a CXIP message.

i nt CXxsMSG : Creat el NPUT(const char *n, const char *t, const
char *v, const char *charset, const char *encoding, *v, int opt
= 0)’

Chapter 5, The ECXpert XML SDK 83

CXxsMSG Class Reference

Parameters The Cr eat el NPUT() method has the following parameters:

n the value of NAME attribute

t the value of TYPE attribute

% the value of the data

char set the value of CHARSET attribute

encodi ng the value of ENCODING attribute

opt the option, which can be OR’ed from the following options:

= CXXS_OPT_KEEPIT - use the string directly; do not duplicate
another copy internally

= CXXS_OPT_FREE - use free() instead of del et e to
release the string

Returns 0 when successful; -1 otherwise.

CreateOUTPUT()

Creates the OUTPUT variable in the DATA section for a CXIP message.

Syntax int CXxsMSG : Creat eQUTPUT(const char *n, const char *t, const
char *v, int opt = 0);

Parameters The Cr eat eOUTPUT() method has the following parameters:

n the value of NAME attribute

t the value of TYPE attribute

v the value of the data

opt the option, which can be OR'ed from the following options:

= CXXS_OPT_KEEPIT - use the string directly; do not duplicate
another copy internally

= CXXS_OPT_FREE - use free() instead of del et e to
release the string

Returns 0 when successful; -1 otherwise.

Creates the OUTPUT variable in the DATA section for a CXIP message.

84 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Syntax

Parameters

Returns

CXxsDOM Class Reference

i nt CXxsMSG : Creat eQUTPUT(const char *n, const char *t, const
char *v, const char *charset, const char *encoding, int opt =
0);

The Cr eat eQUTPUT() method has the following parameters:

n the value of NAME attribute

t the value of TYPE attribute

% the value of the data

char set the value of CHARSET attribute

encodi ng the value of ENCODING attribute

opt the option, which can be OR’ed from the following options:

= CXXS_OPT_KEEPIT - use the string directly; do not duplicate
another copy internally

= CXXS_OPT_FREE - use free() instead of del et e to
release the string

0 when successful; -1 otherwise.

CXxsDOM Class Reference

Interface

Superclasses

02 July 99

Subclasses

Syntax

Syntax

cxxsdom. h
Not applicabl e.
CXxsMsG, CXI P_MsG

class CXxsDoM { ... };

Constructor and Destructor

CXxsDOM()

Creates a CXxsDOM object.

Not intended to be used directly.

Chapter 5, The ECXpert XML SDK 85

CXxsDOM Class Reference

Syntax

Syntax

Parameters

Returns

Syntax

Parameters

~CXxsDOM()

Destroys a CXxsDOM object.

Not intended to be used directly.

Methods

This section lists the methods of the CXxs DOM class.

Parse()

Parses an XML-formatted message, which is passed to this object from the
constructor.

int CXxsDOM : Parse(int opt = 0);
The Par se() method has the following parameter:

opt the option, which can be OR’ed from the following options:

= CXXS_OPT_DELETEDOC - delete the XML message once the
internal DOM object tree is formatted after the parsing

0 when successful; -1 otherwise.

Format()

Formats an XML-formatted message from the internal DOM object tree created
previously by the Create methods.

int CXxsDOM : Format (i nt opt = 0);
The For mat () method has the following parameter:

opt the option, which can be OR'ed from the following options:

« CXXS_OPT_DELETEDOM - delete the internal DOM object
tree once the XML message is formatted/constructed

86 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXxsDOM Class Reference

Returns 0 when successful; -1 otherwise.

GetErrors()

Retrieves information about the parsing error.

Syntax const char *CXxsDOM : Get Errors(int *ecode, int *eline, int
*ecol);

Parameters The Get Errors() method has the following parameters:

ecode the error code
eline the line number where error is detected
ecol the column number where error is detected

Returns The error message, if available.

GetDTD()

Gets the XML DTD from this object.
Syntax inline const char *CXxsDOM : Get DTD() ;
Parameters None.

Returns The DTD string pointer.

GetDocument()

Gets the XML document from this object.
Syntax inline const char *CXxsDOM : Get Docunent () ;
Parameters None.

Returns The document string pointer.

02 July 99 Chapter 5, The ECXpert XML SDK 87

CXxsDOM Class Reference

GetObjectName()

Gets the object name from a CXxsDOM obiject.
Syntax int CXxsDOM : Get Obj ect Name(CXxsOhj obj, char **v);
Parameters The Get Obj ect Nane() method has the following parameters:

obj the object
v the value of the object name

Returns 0 when successful; -1 otherwise.

GetObjectData()

Gets the object data from a CXxsDOM object.
Syntax int CXxsDOM : Get Qbj ect Dat a(CXxsObj obj, char **v);
Parameters The Get Cbj ect Dat a() method has the following parameters:

obj the object
Y the value of the object data

Returns 0 when successful; -1 otherwise.

GetObjectAttribute()

Gets the object attribute from a CXxsDOM obiject.

Syntax int CXxsDOM : Get Cbj ect Attri bute(CXxsObj obj, const char *n, int
*V);

Parameters The Get Cbj ect Attri but e() method has the following parameters:

obj the object
n the name of the object attribute
v the value of the object attribute

88 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXIPInit Class Reference

Syntax int CXxsDOM : Get bj ect Attri but e(CXxsObj obj, const char *n, char
**v) ,

Parameters The Get Obj ect Attri but e() method has the following parameters:

obj the object
n the name of the object attribute
v the value of the object attribute

Returns 0 when successful; -1 otherwise.

CXIPInit Class Reference

Interface cxipinit.h
Superclasses Not applicable.
Subclasses None.

Syntax class CXIPInit { ... };

Constructor and Destructor

CXIPInit()

Creates a CXIPInit object.
Syntax CXIPInit::CXIPInit();

Parameters None.

~CXIPInit()

Destroys a CXIPInit object.

Syntax virtual ~CXIPInit();

02 July 99 Chapter 5, The ECXpert XML SDK 89

CXIPInit Class Reference

Syntax
Parameters

Returns

Syntax

Parameters

Syntax

Parameters

Methods

This section lists the methods of the CXIPInit class.

Init()

Initializes the XML SDK application.
int CXIPInit::Init();
None

0 when successful; -1 otherwise.

SetDebugMode()

Sets debug mode of the application.
void CXIPlnit:: Set Debughbde(int d);
The Set DebugMbde() method has the following parameter:

d the debug mode - 1 when on, 0 when off

SetLogFiles()

Sets output files for debug messages.

void CXIPInit::SetLogFiles(const char *o, const char *e);

The Set LogFi | es() method has the following parameters:

o] the output file for stdout messages - stdout when nil
e the output file for stderr messages - stderr when nil
Base64Decode()

Performs a Base64 decoding.

90 Netscape ECXpert Site Administrator’s Handbook

02 July 99

Syntax

Parameters

Returns

Syntax

Parameters

Returns

CXIPConnection Class Reference

static void *CXIPlnit::Base64Decode(char *src, |ong& srclen,
| ong &decl en);

The Base64Decode() method has the following parameters:

src the source of the (encoded) string to be decoded
srclen the length of the (encoded) source length
decl en the length of the decoded string length

The encoded string when successful; 0 otherwise.

Base64Encode()

Performs a Base64 decoding.

static char *CXIPlnit::Base64Encode(void *src, |ong& srclen,
| ong &encl en);

The Base64Encode() method has the following parameters:

src the source of the string to be encoded
srclen the length of the source length
encl en the length of the encoded string length

The encoded string when successful; 0 otherwise.

CXIPConnection Class Reference

Interface
Superclasses
Subclasses

Syntax

02 July 99

cxi pconn. h
Not applicable.
None.

cl ass CXI PConnection { ... };

Chapter 5, The ECXpert XML SDK 91

CXIPConnection Class Reference

Constructor and Destructor

CXIPConnection()

Creates a CXIPConnection object.
Syntax CXl PConnecti on: : CXlI PConnecti on();

Parameters None.

~CXIPConnection()

Destroys a CXIPConnection object.

Syntax virtual ~CXIPConnection();

Methods

This section lists the methods of the CXIPConnection class.

Connect()

Sonnects to a specified host and port.
Syntax int CXl PConnection:: Connect(const char *host, int port);
Parameters The Connect () method has the following parameters:
host the host name or IP address

port the port number

Returns 0 when successful; -1 otherwise.

92 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXIPListener Class Reference

SendMessage()

Sends a message through the connection.
Syntax int CXl PConnection:: SendMessage(const char *m;
Parameters The SendMessage() method has the following parameter:

m the null-terminated message string

Returns The number of bytes sent when successful; -1 otherwise.

ReceiveMessage()

Receives a message from the connection.
Syntax int CXl PConnection:: Recei veMessage(char **nj;
Parameters The Recei veMessage() method has the following parameter:

m the null-terminated message string - it is allocated inside the
object and expected to be released by the caller

Returns The number of bytes received when successful; -1 otherwise.

CXIPListener Class Reference

Interface cxi plsnr.h
Superclasses Not applicable.
Subclasses None.

Syntax class CXIPListener { ... };

02 July 99 Chapter 5, The ECXpert XML SDK 93

CXIPListener Class Reference

Constructor and Destructor

CXIPListener()

Creates a CXIPListener object.
Syntax CXI PLi st ener: : CXlI PLi st ener () ;

Parameters None.

~CXIPListener()

Destroys a CXIPListener object.

Syntax virtual ~CXlI PListener();

Methods

This section lists the methods of the CXIPListener class.

Init()

Initializes the listener.

Syntax int CXIPListener::Init(const char *conf, const char *sec, const
char *sys = "systenl);

Parameters The I ni t () method has the following parameters:

conf the (ini-formatted) configuration file hame

sec the section name in the configuration file

sys the system section name in the configuration file - "system" is
the default

Returns 0 when successful; -1 otherwise.

94 Netscape ECXpert Site Administrator’s Handbook 02 July 99

CXIPListener Class Reference

Run()

Starts up (runs) the listener.
Syntax virtual int CXl PListener::Run(int blocked = 0);
Parameters The Run() method has the following parameter:

bl ocked the flag indicating whether to run the listener in blocking
mode or not - 0 is non-blocking, any other value is blocking

Returns 0 when successful; -1 otherwise.

ProcessMessage()

Processes a message received from a given conection.

Syntax virtual int CXl PListener:: ProcessMessage(CXl PConnecti on *conn,
const char *nj;

Parameters The ProcessMessage() method has the following parameters:
conn the connection from which the message is received
m the null-terminated message string

Returns 0 when successful; -1 otherwise.

Syntax virtual int CXl PListener:: ProcessMessage(CXl PConnecti on *conn,
CXlI P_MSG *n) ;

Parameters The ProcessMessage() method has the following parameters:

conn the connection from which the message is received
m the parsed XML message in CXIP_MSG format

Returns 0 when successful; -1 otherwise.

02 July 99 Chapter 5, The ECXpert XML SDK 95

CXSubmit Class Reference

CXSubmit Class Reference

Interface cxsbnt . h
Superclasses Not applicable.
Subclasses None.

Syntax class CXSubmit { ... };

Constructor and Destructor

CXSubmit()

Creates a CXSubmit object.
Syntax CXSubmit:: CXSubnit();

Parameters None.

~CXSubmit()

Destroys a CXSubmit object.

Syntax virtual ~CXSubmit();

Methods

This section lists the methods of the CXSubmit class.

Submit()

Submits the document using related parameters specifed inside this object.

Syntax int CXSubmit:: Submt();

96 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Parameters

Returns

Syntax

Parameters

Returns

Syntax

Parameters

Returns

Syntax

Parameters

Returns

02 July 99

CXSubmit Class Reference

None. Parameters are specified inside this object.

0 when successful; -1 otherwise.

SetHost()

Sets the host name or IP address to submit to.
i nt CXSubmit:: Set Host (const char *host);
The CXSubni t () method has the following parameter:

host the host name or IP address to submit to

0 when successful; -1 otherwise.

SetPort()

Sets the port number to submit to.
int CXSubmit::SetPort(const char *host);
The Set Port () method has the following parameter:

port the port number to submit to

0 when successful; -1 otherwise.

SetSender()

Sets the sender name.
i nt CXSubmit:: SetSender(const char *sender);
The Set Sender () method has the following parameter:

sender the sender of the submission

0 when successful; -1 otherwise.

Chapter 5, The ECXpert XML SDK 97

CXSubmit Class Reference

SetReceiver()

Sets the receiver name.
Syntax int CXSubnit:: SetReceiver(const char *receiver);
Parameters The Set Recei ver () method has the following parameter:

receiver the receiver of the submission

Returns 0 when successful; -1 otherwise.

SetDocType()

Sets the document type.
Syntax int CXSubmit:: Set DocType(const char *doctype);
Parameters The Set DocType() method has the following parameter:

doct ype the document type of the submission

Returns 0 when successful; -1 otherwise.

SetDocPath()

Sets the document path.
Syntax int CXSubmit:: Set DocPat h(const char *docpath);
Parameters The Set DocPat h() method has the following parameter:

docpat h the document path of the submission

Returns 0 when successful; -1 otherwise.

98 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Examples

SetDocTransport()

Sets the document transport method.

Syntax int CXSubmit:: SetDocTransport(const char *doctrans);
Parameters The Set DocTransport () method has the following parameter:
doctrans the transport method of the submission
Returns 0 when successful; -1 otherwise.
SetIDs()
Sets the sender and receiver IDs/names for CXIP message.
Syntax int CXSubnit::SetlDs(const char *s, const char *r);
Parameters The Set | Ds() method has the following parameters:
S the sender id
r the receiver id
Note These are not the same Sender/Receiver as in the partnership.
Examples
Makefile The Makefile.{solaris| hpux} under the example directory needs only minimal

Source Code

02 July 99

modifications to build the sample programs. The two steps are:

1. Change the ECXpert = ${ECXPERT-| NSTALLATI ON- LOCATI ON} to
the path of the installation. For example:

[user/ apps/ ECX/ NS- apps/ ECXper t

2. Change the CC = ${ YOUR_CPP_COWPI LER} to the path of the C++
compiler.

See the source files under the xmlsdk/example directory.

Chapter 5, The ECXpert XML SDK 99

Examples

Configuration File See xmlsdk/config/xmlserver.ini for a configuration example.

100 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxBase Class

his chapter describes the EcxBase class, which is the base class for all
APIs in ECXpert. This chapter contains the following sections:

« About the EcxBase Class

= EcxBase Class Reference

02 July 99 Chapter 6, The EcxBase Class 101

About the EcxBase Class

About the EcxBase Class

Methods

The EcxBase class defines the class from which all ECXpert API classes are
derived. For example, ECXpert’'s EcxSubni t class is derived from the EcxBase
class. You may define a subclass derived from the EcxBase class. The
EcxBase class is intended to be used as an abstract class. You should never
need to create EcxBase objects.

The EcxBase class defines methods that are common to the ECXpert API
classes you use to interact programmatically with the ECXpert System. The class
provides methods that allow you to get, set, and clear the error number corre-
sponding to the last error reported by ECXpert.

Summary list:

Constructor and destructor

EcxBase() Creates an EcxBase object.
~EcxSBase() Destroys an EcxBase object.
Error handling

Errnun() Retrieves or sets the last error.
ClearErr() Clears the last error that occurred.
ErrMsg Returns error message string.

EcxBase Class Reference

Interface
Superclasses

Subclasses

Friend Classes

Syntax

ecxbase. h
None

EcxAddr esses, EcxDocunent, EcxFTPCient, Ecxlnit, EcxlLog,
EcxLogi n, EcxMenber, EcxPart nershi p, ECXService, ECXServiceli st,
EcxSubmit, EcxTracking

None

class EcxBase { ... };

102 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Syntax

Syntax

EcxBase Class Reference

Constants and Data Types

The following definitions, which are defined at file scope, allow you to specify
boolean values as integers:

#defi ne TRUE 1
#define FALSE O

TRUE A true value, which is represented as 1.

FALSE A false value, which is represented as 0.

Constructor and Destructor

EcxBase()

Creates an EcxBase object.

EcxBase(voi d);

~EcxBase()

Destroys an EcxBase object.

virtual ~EcxBase();

Methods

This section lists the methods of the EcxBase class.

ClearErr()

Clears the last error that occurred.

Chapter 6, The EcxBase Class 103

EcxBase Class Reference

Syntax

Discussion

Example

See also

Syntax

Parameters

Returns

Discussion

Note

Example

See also

Syntax

Returns

104 Netscape ECXpert Site Administrator’s Handbook

virtual void CearErr(void);

The last error that occurred as a result of calling a method in the ECXpert API is
available until it is explicitly cleared by calling this method or until it has been
reset by calling the Er r nun() method. The d ear Err () method sets the error
number to 0.

pSubmi t Obj - >Cl earErr();

The Errnum() method on page 104.

Errnum()

Retrieves or sets the last error.

vi rtual
vi rtual

| ong Errnun(void);
voi d Errnum(l ong ErrNum;

The Errnum() method has the following parameters:

Er r Num A long integer that specifies the error number.

A long integer that contains the last error that occurred.

The first form of the Err num() method returns the last error that occurred. The
second form sets the value of the error number. The second form is protected.

When you use the API, ECXpert sets the error number.ECXpert

if (pSubmtQObj->Errnum())

printf("Error: % d occurred\n", pSubm tObj->Errnum);

Call the C ear Err () method on page 103 to reset the error number to 0.

Errmsg()

Returns error message string.
virtual const char * Errmnmsg(void);

Pointer to a character string containing the last error message that occurred.

02 July 99

02 July 99

Discussion

Example

See Also

EcxBase Class Reference

This value could be null, because not every object gets the error message. Refer
to the code examples for each class in this book to determine whether it will
return an error message. For example, the ECXLogi n class will return an error
message if it fails.

i f((pLogin = new EcxLogin())->Errnum()) {
cout << "EcxLogin Object Error:" << endl;
cout << "\tErrnum " << pLogin->Errnun() << endl;
cout << "\tErrnmsg: " << pLogin->Errnmsg() << endl;
cout << endl;
return(NULL); }

The EcxLogi n() class on page 127.

Chapter 6, The EcxBase Class 105

EcxBase Class Reference

106 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxInit Class

his chapter describes the EcxI ni t class, whose objects initialize your
application to for ECXpert database access. This chapter contains the
following sections:

« About the EcxInit Class
= Using the EcxlInit Class

« EcxInit Class Reference

02 July 99 Chapter 7, The EcxInit Class 107

About the EcxInit Class

About the EcxInit Class

You must create an Ecxl ni t object before using any other class in the SDK.
Methods Summary list:

Constructor and destructor
Ecxlnit() Creates an Ecxl ni t object.
~Ecxlnit() Destroys an Ecx| ni t object.

Using the EcxInit Class

You must create a single Ecx| ni t object within your application. You can call
the class’s Er r nun() method to determine whether initialization succeeded.

int main(int argc, char * argv[])

{
iE;:;dnit Ecxl ni t Obj ect ;
.d;).// mai n processing | oop
{ if (EcxlnitObject.Errnum() !'=0)
{ printf("Failed to initialize Ecxlnit object.\n");
br eak;
}
}

EcxInit Class Reference

Interface ecxinit.h
Superclasses EcxBase
Subclasses None

Friend Classes None

108 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxInit Class Reference

Syntax class Ecxlnit : public EcxBase { ... };

Constructor and Destructor

EcxInit()

Creates an EcxI ni t object.
Syntax Ecxlnit(void);

Example See “Using the EcxInit Class” on page 108.

~EcxInit()

Destroys an EcxI ni t object.

Syntax virtual ~Ecxlnit();

02 July 99 Chapter 7, The EcxInit Class 109

EcxInit Class Reference

110 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxSubmit Class

This chapter describes the EcxSubni t class, which defines methods that
you use to submit files to ECXpert. This chapter contains the following
sections:

= About the EcxSubmit Class
= Using the EcxSubmit Class

e EcxSubmit Class Reference

02 July 99 Chapter 8, The EcxSubmit Class 111

About the EcxSubmit Class

About the EcxSubmit Class

The EcxSubni t class defines methods that you use to submit a file to ECXpert.
You can use these methods to provide a file submission capability within your
application instead of requiring the user to execute a command or use
ECXpert's HTML interface to submit an object.

You may create objects from the EcxSubni t class and use them directly or you
may define a subclass of the EcxSubni t class and create objects from the

derived class. For example, you might define a subclass that handles much of
the application logic associated with files to be submitted to ECXpert. Objects
derived from your subclass would inherit the ability to submit files to ECXpert.

Before you create an EcxSubni t object, you must first create an EcxI ni t
object. You then can create an EcxSubni t object and specify the following
information:

= Member ID of the sender

< Member ID of the recipient

= Sender’s password, which is optional for trusted members
< Full path of ECXpert’s configuration file

= Map name (optional)

= Delivery method (optional)

= File name

< File type

You call methods to specify this information. For example, you call the object’s
Set Sender method (page 125) to specify the sender’'s member ID.

You must specify the files that you wish to submit to ECXpert. You build a
submission list by calling the object’s AddFi | e() method (page 118) to add a
file to the list. You specify the following information when you add a file:

< Document name

= Document type, such as EDIFACT or EDIX12, or a non-EDI type

112 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Note

Methods

About the EcxSubmit Class

You can add as many files as you want. If you add more than one file, the files
become part of a single multi-part file. When you finish adding the files to the
submission list, you can call the object’s Subni t () method (page 125) to
submit the files.

If the file being submitted is in the local file system, ECXpert moves the file
being submitted to the directory specified by the r eposi t ory entry in the
configuration file’s t cpi p- connect or section.

You can also submit files to ECXpert using a TCP/IP connection. You specify
whether or not to use a TCP/IP connection when you call the object’s

Subni t () method. Using a TCP/IP connection causes ECXpert to stream the
contents of the files through a socket to the server. This is a useful technique if
your application runs on a remote computer and the files being submitted are
relatively small. If you want to submit large files from a remote computer, you
should consider using a protocol such as FTP to copy the files to the server and
then submit them from the server.

If you stream data through a TCP/IP connection, the source file is not deleted
after the data has been streamed to the server.

After you submit a file, you should check for errors. If no error occurred, you
can call the object’s Get Fi r st Tr acki ngl D() method (page 119) to determine
the tracking ID of the first file submitted and the object’s Get Next Tr ack-

i ngl D() method (page 121) to determine the tracking ID for each additional
file in the list.

When you no longer need references to these files, you can call the object’s

Cl earFil eLi st () method (page 119) to remove the files from the list. You
could then add new file(s) by calling the AddFi | e() method and then submit
the new file by calling the Subnmi t () method.

Summary list:

Constructor and destructor

EcxSubni t () Creates a submission object.
~EcxSubmi t () Destroys a submission object.
Retrieving submission information

GetDeliveryMethod Gets the delivery method.

GetEcxIniFileName Gets the full pathname of ECXpert's configuration file.
GetMapName Gets the map name.

GetPassword Gets the sender’s password

Chapter 8, The EcxSubmit Class 113

Using the EcxSubmit Class

GetSender Gets the sender’s member ID.
Setting submission information

Set Sender () Sets the sender’s member ID.
Set Reci pi ent () Sets the recipient’s member ID.
Set Passwor d() Sets the sender’s password.

Set EcxI ni Fi | eName() Sets the full pathname of ECXpert’s configuration file.
Set MapNarre() Sets the map name.

Set Del i veryMet hod() Sets the delivery method.

Manipulating the submission list

AddFi | e() Adds a file to the submission list.

ClearFileList() Clears the submission list.

CGet Fi rst Tracki ngl D() Retrieves the tracking ID for the first file in the object’s submis-
sion list.

Get Next Tracki ngl D() Retrieves the tracking ID for the next file in the object’s sub-
mission list.

Submitting files

Subni t () Submits objects to ECXpert for processing.

Using the EcxSubmit Class

The following program shows how to use the EcxSubni t class. The program
creates an EcxSubni t object and sets the sender, receiver, password, map
name, and initialization file. It then adds three files to the submission list and
submits them to ECXpert for processing. After submitting the files, the program
retrieves the tracking IDs of these files.

#i ncl ude <stdio. h>

#i ncl ude "ecxsubmit.h"

int main(int argc, char * argv[])
{

int retval = -1;

Ecxlnit Ecxl ni t Ooj ect ; /1 must instantiate this

114 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the EcxSubmit Class

/1 before calling sdk

EcxSubmit * pSubmitObj = O;

do
{
if (EcxlnitObject.Errnum() !'=0)
{
printf("Failed to initialize Ecxlnit object.\n");
br eak;
}
if ((pSubmitObj = new EcxSubmit) == 0)
{
printf("No nenory to create Ecxpert submi ssion object.\n");
br eak;
}

if (pSubm tObj->SetSender("jiml").Errnun() |
pSubm t Obj - >Set Reci pi ent ("smani 1") . Errnum() |
pSubm t Obj - >Set Passwor d("jiml"). Errnun() |
pSubm t Obj - >Set MapNane(" nymap") . Errnun() |
pSubm t Obj - >Set Ecx| ni Fi | eName("ecx.ini").Errnum) ||
pSubm t Ooj - >Set Del i ver yMet hod("vi a- my-app") . Errnum())

printf("Failed to set subm ssion paraneters.\n");
br eak;

if (pSubmtObj->AddFile("inputl.dat", "edi850").Errnun() ||
pSubm t Obj - >AddFi | e("i nput2.dat", "edi850").Errnum() ||
pSubm t Ooj - >AddFi | e("i nput3.dat", "edi850").Errnum))

printf("Failed to add files to the submi ssion object.\n");
br eak;

printf("Subm ssion paraneters are as follows:\n"
"ECXpert configuration file = 9%\n"
"Sender nane = %s\n"
"Reci pi ent name = %\n"
"Password = %\ n"

02 July 99 Chapter 8, The EcxSubmit Class 115

Using the EcxSubmit Class

"Delivery nethod = %\n"

"Map name = %\ n",

pSubmi t Obj - >Get EcxI ni Fi | eNanme(), pSubmi t Obj - >Get Sender (),
pSubm t Ooj - >Get Reci pi ent (), pSubm t Cbj - >Get Password(),
pSubmi t Obj - >CGet Del i ver yMet hod() , pSubni t Cbj - >CGet MapNane()) ;

printf("Submitting files now...... \n");
if (pSubmtObj->Submit().Errnun())

{

printf("Subm ssion failed.\n");
br eak;

| ong Tracki ngl D = pSubmi t Obj - >Get Fi r st Tracki ngl () ;

for (int LoopCount = 1; TrackinglD!= 0; ++LoopCount)

{
printf("Registered file input%d with Tracking ID %d\n",
LoopCount, Trackingl D);
Tracki ngl D = pSubm t Qbj - >Get Next Tracki ngl D() ;
}
retval = 0; // set return code to success
}
while(0);

if (pSubmitQnj)

{
if (pSubmtObj->Errnum())
{
printf("Error: %d\n", pSubmtQObj->Errnum());
}
del ete pSubm t oj ;
}

return(retval);

116 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxSubmit Class Reference

Interface
Superclasses
Subclasses
Friend Classes

Syntax

Syntax
Discussion

Example

Syntax
Discussion
Example

See Also

02 July 99

ecxsubmit. h
EcxBase
None

None

cl ass EcxSubmit public EcxBase { ... };

Constructor and Destructor

EcxSubmit Class Reference

EcxSubmit()

Creates a submission object.
EcxSubmi t (voi d) ;
The constructor creates a submission object.

See “Using the EcxSubmit Class” on page 114.

~EcxSubmit()

Destroys a submission object.

~EcxSubmi t (voi d);

The destructor destroys a submission object.
See “Using the EcxSubmit Class” on page 114.
The Submi t () method on page 125.

Chapter 8, The EcxSubmit Class 117

EcxSubmit Class Reference

Methods

This section lists the methods of the EcxSubmi t class.

AddFile()

Adds a file to the submission list.

Syntax EcxSubm t & AddFi |l e(const char * pFil eNane,
const char * pFileType);

Parameters The AddFi | e() method has the following parameters:

pFi | eName A pointer to the path and file name of the file you want to
include with this submission.

pFi | eType A pointer to the data type of the file you want to include with
this submission.

Returns A reference to this submission object.

Discussion The AddFi | e() method adds the specified file to the submission list. You can
add as many files to the submission list as you wish. If you add more than one
file, the files become part of a single multi-part file.

If you do not specify the path name, ECXpert looks for the file in the directory
where the t cpi p- connect or server is executing. You can avoid errors locating
the file by specifying the full path name as part of the file name.

After you add the files and specify the other information associated with the
submission object, you can call the object’s Submi t () method to submit the
files to ECXpert for processing. You should immediately check for errors after
calling the Subni t () method. If an error occurs, none of the files are
submitted. They are either all submitted successfully or none of them are
submitted.

Example See “Using the EcxSubmit Class” on page 114.

See Also The Submi t () method on page 125.

118 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax
Discussion

See Also

Syntax

Returns

Discussion

Example

See Also

Syntax

Returns

Discussion

Example

EcxSubmit Class Reference

ClearFileList()

Clears the file list.
void ClearFileList(void);
All files associated with this submission instance can no longer be referenced.

The AddFi | e() method on page 118.

GetDeliveryMethod()

Retrieves the delivery method set by the Set Del i ver yMet hod() method.
virtual const char* GetDeliveryMethod(void) const;

A pointer to a character string that contains the delivery method set by the
Set Del i ver yMet hod() method.

The Get Del i ver yMet hod() method will return a NULL (zero) value if the
delivery method has not already been set by the Set Del i ver yMet hod()
method.

See “Using the EcxSubmit Class” on page 114.

The Set Del i ver yMet hod() method on page 122.

GetEcxIniFileName()

Retrieves the full pathname of ECXpert's configuration file set by the Set Ecx-
I ni Fi | eName() method.

virtual const char* GetEcxlni Fil eName(void) const;

A pointer to a character string that contains the full pathname of ECXpert’s
configuration file set by the Set Ecx| ni Fi | eNane() method.

The Get EcxI ni Fi | eNane() method will return a NULL (zero) value if the
file name has not already been set by the Set EcxI ni Fi | eNane() method.

See “Using the EcxSubmit Class” on page 114.

Chapter 8, The EcxSubmit Class 119

EcxSubmit Class Reference

See Also

Syntax

Returns

Discussion

Example

See Also

Syntax

Returns

Discussion

Example

See Also

The Set EcxI ni Fi | eNane() method on page 123.

GetFirstTrackingID()

Retrieves the tracking ID for the first file in the object’s submission list.
| ong Get FirstTrackingl D(void);

A long integer that contains the tracking ID of the first file in the submission list
or returns 0 if there are no files in the list.

The submission list contains references to all the files since you created the
object or since the last time you called the object’s O ear Fi | eLi st () method.
You should only call the Get Fi r st Tr acki ngl D() method after you call the
Submi t () method. If you do not first call the Subni t () method or if it fails, the
value returned by calling the Get Fi r st Tr acki ngl D{) method is undefined.

After you call the object’s Get Fi r st Tr acki ngl D() method, the tracking ID for
the second file in the list will be the next ID to be returned, if the file exists.

See “Using the EcxSubmit Class” on page 114.

The Get Next Tracki ngl D() method on page 121. The Submi t () method on
page 125.

GetMapName ()

Retrieves the map name set by the Set MapNane() method.
virtual const char* Get MapNanme(voi d) const;

A pointer to a character string that contains the map name set by the
Set MapNane() method.

The Get MapNare() method will return a NULL (zero) value if the map name
has not already been set by the Set MapNane() method.

See “Using the EcxSubmit Class” on page 114.

The Set MapNanme() method on page 123.

120 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Returns

Discussion

Example

See Also

Syntax

Returns

Discussion

Example

EcxSubmit Class Reference

GetNextTrackinglD()

Retrieves the tracking ID for the next file in the object’s submission list.
| ong Get Next Tracki ngl D(voi d);

A long integer that contains the tracking ID of the next file in the submission
list or returns 0 if there are no more files in the list.

The submission list contains references to all the files since you created the
object or since the last time you called the object’s O ear Fi | eLi st () method.
You can call the Get Next Tr acki ngl D{) method repeatedly to retrieve the
tracking IDs of each file in the list, in the order that you added them.

You should only call the Get Next Tr acki ngl D({) method after you call the
Subni t () method. If you do not first call the Subni t () method or if it fails, the
value returned by calling the Get Next Tr acki ngl D() method is undefined.

After you call the Get Fi r st Tr acki ngl D() method, the Get Next Tr ack-

i ngl D() method returns the tracking ID for the second file in the list, if it
exists. If you call the Get Next Tr acki ngl D() method after creating the object
or after clearing the file list without first calling the object’s Get Fi r st Tr ack-

i ngl D() method, the Get Next Tr acki ngl D() method returns the tracking ID
of the first file in the list or returns 0 if the list is empty.

See “Using the EcxSubmit Class” on page 114.

The Get Fi rst Tr acki ngl D() method on page 121. The Subni t () method on
page 125.

GetPassword()

Retrives the sender’s password set by the Set Passwor d() method.
virtual const char* GetPassword(void) const;

A pointer to a character string that contains the sender’s password set by the
Set Passwor d() method.

The Get Passwor d() method will return a NULL (zero) value if the sender’s
password has not already been set by the Set Passwor d() method.

See “Using the EcxSubmit Class” on page 114.

Chapter 8, The EcxSubmit Class 121

EcxSubmit Class Reference

See Also

Syntax

Returns

Discussion

See Also

Syntax

Returns

Discussion

Example

See Also

Syntax

122 Netscape ECXpert Site Administrator’s Handbook

The Set Passwor d() method on page 124.

GetRecipient()

Retrieves the recipient’'s member ID set by the Set Reci pi ent () method..
virtual const char* GetRecipient(void) const;

A pointer to a character string that contains the recipient’'s member ID set by
the Set Reci pi ent () method.

The Get Reci pi ent () method will return a NULL (zero) value if the
recipient’s password has not already been set by the Set Reci pi ent ()
method.

The Set Reci pi ent () method on page 124.

GetSender()

Retrieves the sender’s member ID set by the Set Sender () method.
virtual const char* GetSender(void) const;

A pointer to a character string that contains the sender’s member ID set by the
Set Sender () method.

The Get Sender () method will return a NULL (zero) value if the sender’s
password has not already been set by the Set Sender () method.

See “Using the EcxSubmit Class” on page 114.

The Set Sender () method on page 125.

SetDeliveryMethod()

Sets the delivery method.

virtual EcxSubmité& SetDeliveryMethod(const char *
pDel i ver yMet hod) ;

02 July 99

02 July 99

Parameters

Returns

Discussion

Example

See Also

Syntax

Parameters

Returns

Discussion

Example

See Also

Syntax

EcxSubmit Class Reference

The Set Del i ver yMet hod() method has the following parameters:

pDel i ver yMet hod A pointer to a character string that specifies the delivery

method.

A reference to this submission object.

Call this method if you want to specify the way in which the file was submitted
to ECXpert. If you do not call this method, the transport type for this
submission is NULL in the database.

See “Using the EcxSubmit Class” on page 114.

“Tracking-related Tables” on page 379.

SetEcxIniFileName()

Sets the full pathname of ECXpert's configuration file.
EcxSubmi t & Set EcxI ni Fi | eName(const char * plniFil eNane);
The Set EcxI ni Fi | eNane() method has the following parameters:

pl ni Fi | eNane A pointer to a character string that specifies the configuration

file.

A reference to this submission object.

The configuration file is typically found in the confi g subdirectory from the
directory where ECXpert was installed. You must call the Set EcxI ni -
Fi | eName() method before you call the Subni t () method.

See “Using the EcxSubmit Class” on page 114.
The Submi t () method on page 125.

SetMapName()

Sets the map name.

EcxSubmi t & Set MapName(const char * pMapNane);

Chapter 8, The EcxSubmit Class 123

EcxSubmit Class Reference

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

See Also

Syntax

Parameters

124 Netscape ECXpert Site Administrator’s Handbook

The Set MapNanme() method has the following parameters:

pMapNane A pointer to a character string that contains the map name.

A reference to this submission object.

Call this method if you want to override the partnership document map name
for this submission with the specified map name.

See “Using the EcxSubmit Class” on page 114.

SetPassword()

Sets the sender’s password.
EcxSubmi t & Set Passwor d(const char * pPassword);
The Set Passwor d() method has the following parameters:

pPasswor d A pointer to a character string that contains the password.

A reference to this submission object.

A password can contain as many as 60 characters. It can contain letters,
numbers, and special characters, and is case sensitive. You must call the
Set Passwor d() method before you call the Submi t () method, unless the
sender is trusted member.

See “Using the EcxSubmit Class” on page 114.

The Submi t () method on page 125.

SetRecipient()

Sets the recipient's member ID.
EcxSubmi t & Set Reci pi ent (const char * pReci pient);
The Set Reci pi ent () method has the following parameters:

pReci pi ent A pointer to a character string that contains the member ID.

02 July 99

02 July 99

Returns

Discussion

Example

See Also

Syntax

Parameters

Returns

Discussion

Example

See Also

Syntax

Parameters

Returns

EcxSubmit Class Reference

A reference to this submission object.

A member ID can contain as many as 60 characters. It can contain letters,
numbers, and special characters, and is case sensitive. You must call the
Set Reci pi ent () method before you call the Subni t () method.

See “Using the EcxSubmit Class” on page 114.

The Submi t () method on page 125.

SetSender()

Sets the sender’'s member ID.
EcxSubmi t & Set Sender (const char * pSender);
The Set Sender () method has the following parameters:

pSender A pointer to a character string that contains the member ID.

A reference to this submission object.

A member ID can contain as many as 60 characters. It can contain letters,
numbers, and special characters, and is case sensitive. You must call the
Set Sender () method before you call the Subni t () method.

See “Using the EcxSubmit Class” on page 114.
The Submi t () method on page 125.

Submit()

Submits objects to ECXpert for processing.
EcxSubmit & Submit (int bDataStreani ng = FALSE);
The Submi t () method has the following parameters:

bDat aSt r eani ng Specify TRUE if you want to stream data through a TCP/IP

connection; the default is FALSE.

A reference to this submission object.

Chapter 8, The EcxSubmit Class 125

EcxSubmit Class Reference

Discussion This method submits one or more files to ECXpert. Before you can submit a
file, you must specify the sender and recipient, the sender’s password if the
sender is not a trusted member, and the ECXpert configuration file.

You must call the methods described on page 113 to set the submission infor-
mation for the EcxSubmit object.

The bDat aSt r eani ng parameter specifies whether to use a TCP/IP connection
to submit the files; set it to TRUE to use this kind of connection. The default is
FALSE, which specifies moving the files after they are on the server. See “About
the EcxSubmit Class” on page 112 for more information about streaming versus
moving files.

Note If you stream data through a TCP/IP connection, the source file is not deleted
after the data has been streamed to the server.

If you call the Subni t () method again, you only need to specify the values
that have changed. For example, to submit additional files without changing the
sender and receiver, you only need to call the O ear Fi | eLi st () method to
remove the current files from the list, call the AddFi | e() method for each file
you want to add, and then call the Submi t () method again to submit the new
files.

After you call the object’s Subni t () method, you should immediately check for
errors. If an error occurred, none of the files were submitted. The files in the
submission list are either all submitted successfully or none of them are
submitted.

Example See “Using the EcxSubmit Class” on page 114.

See Also To specify the sender, call the Set Sender () method on page 125. To specify
the recipient, call the Set Reci pi ent () method on page 124. To specify the
sender’s password, call the Set Passwor d() method on page 124. To specify
the map file, call the Set MapName() method on page 123. To specify the
configuration file, call the Set EcxI ni Fi | eNarmre() method on page 123. To add
files, call the AddFi | e() method on page 118. To remove files from the list, call
the d ear Fi | eLi st () method on page 119.

126 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxLogin Class

his chapter describes the EcxLogi n class, which allows a user to access
the database. This chapter contains the following sections:

= About the EcxLogin Class
= Using the EcxLogin Class

= EcxLogin Class Reference

02 July 99 Chapter 9, The EcxLogin Class 127

About the EcxLogin Class

About the EcxLogin Class

Objects of the EcxLogi n class represent connections to the database. To log
into the database, you can create an EcxLogi n object and call the object’s
Logi n method. When you no longer need the connection to the database, you
can call the object’s Logout method.

Methods Summary list:

Constructor and destructor

EcxLogi n() Creates an EcxLogi n object.

~EcxLogi n() Destroys an EcxLogi n object.

Logging in and out

Logi n() Logs into the database.

Logout () Logs out of the database.

Determining the type of member

Menber Type() Determines the type of member currently logged in.

Using the EcxLogin Class

The following example shows how to create an EcxLogi n object and call the
object’s Logi n method to create a connection to the database.

EcxLogin * | ogi n(const char *nane, const char *password) {
EcxLogi n *pLogin = NULL;

i f((pLogin = new EcxLogin())->Errnum()) {
cout << "EcxLogin Object Error:" << endl;
cout << "\tErrnum " << pLogin->Errnum() << endl;
cout << "\tErrmsg: " << plLogin->Errnmsg() << endl;
cout << endl;
return(NULL) ;

}

i f ((pLogin->Logi n(nanme, password)).Errnun()) {
cout << "EcxLogin.Login() Failed for user: " << nane << endl;
cout << "\tErrnum " << pLogin->Errnun() << endl;
cout << "\tErrnsg: " << pLogin->Errnmsg() << endl;
cout << endl;
del ete pLogin;

128 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxLogin Class Reference

return(NULL) ;

}
return(pLogin);

EcxLogin Class Reference

Interface ecxl ogin. h
Superclasses None
Subclasses EcxBase
Friend Classes None

Syntax class EcxLogin : public EcxBase { ... };

Constructor and Destructor

EcxLogin()
Creates an EcxLogi n object.
Syntax EcxLogi n(voi d);

Example See “Using the EcxLogin Class” on page 128.

~EcxLogin()
Destroys an EcxLogi n object.

Syntax virtual ~EcxLogin();

Methods

This section describes the methods of the EcxLogi n class.

02 July 99 Chapter 9, The EcxLogin Class 129

EcxLogin Class Reference

Login()
Logs into the database.

Syntax virtual EcxLogi n& Logi n(const char *usernane, const char
*passwor d) ;

Parameters The Logi n() method has the following parameters:

user nane A pointer to a character string that represents the user name.
password A pointer to a character string that represents the password.

Returns A pointer to this EcxLogi n object.

Discussion The user name must match that of a member in the database. If the member is
a trusted member, the password in not checked.

Example See “Using the EcxLogin Class” on page 128.

Logout()

Logs out of the database.
Syntax virtual EcxLogi n& Logout (void);

Returns A pointer to this EcxLogi n object.

MemberType()

Determines the type of member currently logged in.
Syntax unsigned int Menber Type();
Parameters The Menber Type() method has the following parameters:

type An unsigned integer that specifies whether the member is an
administrator.

Returns An unsigned integer that contains the type of member.

130 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxLogin Class Reference

Discussion A type of ADM NI STRATOR indicates that the member is an administrator. A
type of MEMBER indicates that the member is not an administrator. If no

member is currently logged in, the Menber Type() method returns a type of
MEMBER The Menber Type() method does not modify the database.

See also “Class Variables” on page 140.

02 July 99 Chapter 9, The EcxLogin Class 131

EcxLogin Class Reference

132 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxMember Class

his chapter describes the EcxMenber class, which represents member
records in an ECXpert database. This chapter contains the following
sections:

< About the EcxMember Class
= Using the EcxMember Class

e EcxMember Class Reference

02 July 99 Chapter 10, The EcxMember Class 133

About the EcxMember Class

About the EcxMember Class

The EcxMember class represents member records in an ECXpert database.
Administrators can manipulate any member record for their trading partner-
ships; non-administrators can only change contact information in their own
record. A user must be logged in to the database before accessing a record.

Methods Summary list:

Constructor and destructor

EcxMenber () Creates an EcxMenber object.
~EcxMenber () Destroys an EcxMenber object.
Allowing database access

Set Logi n() Allows the object to access the database.
Adding, retrieving, changing and deleting member records

Add() Adds a member record to the database.

Get () Retrieves a member record from the database.
Change() Changes a member record in the database.
Del et e() Deletes a member from the database.

Listing member records

List() Retrieves a list of member records from the database.
Mor e() Determines whether more records are left in the list.
Next () Associates the object with the next record in the list.

Resetting an object’s state

Cl ear () Clears the state associated with an object, including its list.
Accessing key fields

Name() Determines or specifies the name of the member.
Accessing contact information

Cont act Name() Determines or specifies the name of the contact person for this
member.

Cont act Corpany() Determines or specifies the contact’'s company.

Cont act Addr ess1() Determines or specifies the first line of the contact’s address.

Cont act Addr ess2() Determines or specifies the second line of the contact’s
address.

Cont act City() Determines or specifies the contact’s city.

Cont act St at e() Determines or specifies the contact’s state.

134 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the EcxMember Class

Cont act Zi p() Determines or specifies the contact’s zip or postal code.
Cont act Count ry() Determines or specifies the contact’s country.

Cont act Phone() Determines or specifies the contact's phone number.
Cont act Fax() Determines or specifies the contact’s fax number.

Cont act Emai | 1 d() Determines or specifies the contact’s e-mail address.

Accessing other fields

Descri ption() Determines or specifies the member’s description.

Type() Determines or specifies the type of member.

Par ent Name() Determines the name of the parent member.

1 sGoup() Determines or specifies whether the member is a group or
individual.

Active() Determines or specifies whether the member is active.

Passwor d() Determines or specifies the member’s password.

Trusted() Determines or specifies whether the member is trusted.

Qbj Perm() Determines or specifies the record’s access permissions.

ModBy G oup() Determines the group that last modified the record.

ModByUser () Determines the user that last modified the record.

ModDt () Determines the date the record was last modified.

Using the EcxMember Class

The following sections show how to

= create member objects

= add members to the database

= change members’ records in the database
= list members in the database

« delete members from the database

02 July 99 Chapter 10, The EcxMember Class 135

Using the EcxMember Class

Creating Member Objects

The following example shows how to create an EcxMenber object and how to
allow access to the database by calling the object’s Set Logi n() method:

EcxMenber * make_nenber obj (EcxLogin * plLogin) {
EcxMember * pMenber = NULL;

i f((pMenmber = new EcxMember ())->Errnum()) {
cout << "EcxMember Object Error:" << endl;
cout << "\tErrnum " << pMenber->Errnum() << endl;
cout << "\tErrmsg: " << pMenber->Errnsg() << endl;
cout << endl;
return(NULL) ;

}

i f((pMenber->Set Logi n(*pLogin)).Errnun()) {
cout << "EcxMenber. SetLogin() Failed:" << endl;
cout << "\tErrnum " << pMenmber->Errnum() << endl;
cout << "\tErrnsg: " << pMenber->Errnsg() << endl;
cout << endl;
del et e pMenber;
return(NULL) ;

}

ret urn(pMenber) ;
}

Alternatively, you can pass the login object to the EcxMember constructor
without having to call Set Logi n() .

Adding Members

The following example shows how to add a member record to the database. An
administrator’s login must be associated with the object you want to add.

i nt add_menber (EcxMenber *pMenber, const char *nane) ({
pMenber - >Cl ear () ;

pMenber - >Nane(nane) ;

pMenber - >Descri ption("This is the description");
pMenber - >Type(pMenber - >MEMBER) ;

pMenber - >l sG oup(FALSE) ;

pMenber - >Act i ve(TRUE) ;

136 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the EcxMember Class

pMenber - >Passwor d(nane) ;

pMenber - >Tr ust ed(FALSE) ;

pMenber - >Cont act Nane(" Jack Fl ack");

pMenber - >Cont act Conpany (" Conpany AAA");
pMenber - >Cont act Addr ess1(" 109 Short Stack St.");
pMenber - >Cont act Addr ess2(" Apt. #12");
pMenber - >ContactCity("Big City");

pMenber - >Cont act St at e("New Cal i fornia");
pMenber - >Cont act Zi p(" 12666") ;

pMenber - >Cont act Count ry(" AUFD") ;

pMenber - >Cont act Phone(" 123 456-7890") ;
pMenber - >Cont act Fax(" 123 456-7899");

pMenber - >Cont act Emai | 1 d("crank@| i pant.org");
pMenber - >bj Per m(755) ;

i f((pMenber->Add()).Errnun()) {

cout << "EcxMenber.add() Failed for user: " << name << endl;
cout << "\tErrnum " << pMenber->Errnum() << endl;
cout << "\tErrmsg: " << pMenber->Errnsg() << endl;
return(pMenber - >Errnum());

}

cout << "*** Added menber: " << name << endl;

return(0);

Changing Members’ Fields

The following example shows how to change the contact’s e-mail address. The
CGet () method retrieves the record to modify using the key field, which is
specified by calling the object’s Nane() method.

Note Non-administrators can only retrieve their own record and, thus, change only
their own record.

i nt change_emui | (EcxMenber * pMenber, const char * nane) {
char email [1024];

pMenber - >Cl ear () ;
pMenber - >Nane(nane) ;

i f((pMenmber->Get()).Errnum()) {

cout << "EcxMenmber.Get() Failed for user: " << name << endl;
cout << "\tErrnum " << pMenber->Errnum() << endl;
cout << "\tErrnsg: " << pMenber->Errnsg() << endl;

02 July 99 Chapter 10, The EcxMember Class 137

Using the EcxMember Class

return(pMenber - >Errnum());

}
strcpy(email, nane);
strcat(email, "@eaven.org");

pMenber - >Cont act Emai | | d(emai |) ;

i f((pMenber->Change()).Errnum()) {

cout << "EcxMenmber. Change() Failed for user: " << name << endl;

cout << "\tErrnum " << pMenber->Errnum() << endl;
cout << "\tErrnsg: " << pMenber->Errnsg() << endl;
return(pMenber - >Errnum());

}

return(0);

Listing Members

The following example shows how to create a list of all members.

Note If the login object specifies a non-administrator, this example returns only that

member’s record.

int |ist(EcxMenber *pMenber) {
pMenber - >Cl ear () ;

if((pMenber->List()).Errnum()) {
cout << "EcxMenber.List() Failed:" << endl;
cout << "\tErrnum " << pMenber->Errnum() << endl;
cout << "\tErrnsg: " << pMenber->Errnsg() << endl;
return(pMenber - >Errnum());

}

cout << "***]jsting menbers" << pMenber->Mre();
cout << " records found. ***" << endl;

whi | e(pMenmber - >More()) {

cout << pMenber->Nane() << "t
cout << pMenber->Type() << "t
cout << pMember->Cont act Nanme() << "My

cout << pMenber->Contact Address1() << ":";
cout << pMenber->Contact Address2() << ":";
cout << pMenber->ContactEmailld() << endl;
pMenber - >Next () ;

138 Netscape ECXpert Site Administrator’s Handbook

02 July 99

EcxMember Class Reference

}

return(0);

}

Deleting Members

The following example shows how to delete a member record from the
database. An administrator’s login must be associated with the object you want
to delete.

int del et e_nenber (EcxMenmber *pMenber, const char * nane) {

pMenber - >Cl ear () ;
pMenber - >Nane(nane) ;

i f((pMenber->Delete()).Errnum)) {

cout << "EcxMenmber.Delete() Failed for user: " << name << endl;
cout << "\tErrnum " << pMenber->Errnum() << endl;
cout << "\tErrnsg: " << pMenber->Errnsg() << endl;
return(pMenber - >Errnum());

}

cout << "*** Deleted nmenber: " << name << endl;

return(0);

EcxMember Class Reference

Interface ecxnenber. h
Superclasses EcxBase
Subclasses None
Friend Classes None

Syntax cl ass EcxMember : public EcxBase { ... };

02 July 99 Chapter 10, The EcxMember Class 139

EcxMember Class Reference

Syntax

Syntax

Parameters

Discussion

Example

See also

Syntax

Class Variables

The following class variables allow you to identify the member as either an

administrator or an ordinary member:

static int ADM Nl STRATOR,
static int MEMBER

ADM NI STRATOR Administrator

MEMBER Member (non-administrator)

Constructor and Destructor

EcxMember()

Creates an EcxMenber object.

EcxMenber (voi d) ;
EcxMenber (EcxLogi n& | ogi n) ;

The constructor has the following parameters:

| ogin The login object to associate with this member object.

The first form of the constructor allows you to create a stack-based object. The
second form of the constructor requires that you create an EcxLogi n object

before you create this object.

See “Creating Member Objects” on page 136.

The Set Logi n() method on page 154. The EcxLogi n class on page 127.

~EcxMember()

Destroys an EcxMenber object.

virtual ~EcxMenber (void);

140 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

Discussion

See also

Syntax

Parameters

Returns

Discussion

Example

Syntax

Returns

EcxMember Class Reference

The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Cl ear () method. The destructor
does not destroy the associated EcxLogi n object.

The C ear () method on page 142.

Methods

This section describes the methods of the EcxMemnber class.

Active()

Determines or specifies whether the member is active.

unsigned int Active() const;
voi d Active(const unsigned int status);

The Acti ve() method has the following parameters:

status An unsigned integer that specifies whether the member is
active.

The first form of the method returns an unsigned integer that contains the

status.

Use the first form of the method to determine whether the member is active.
Use the second form to specify whether the member is active. A status of TRUE
(1) indicates that the member is active. A status of FALSE (0) indicates that the
member is inactive. The Act i ve() method does not modify the database.

See “Adding Members” on page 136.

Add()

Adds a member record to the database.
EcxMenber & Add(voi d);

A reference to this member object.

Chapter 10, The EcxMember Class 141

EcxMember Class Reference

Discussion

Example

See also

Syntax
Returns

Discussion

Warning

Example

See also

You must be an administrator and be logged in before calling this method. You
must specify the member’s name in the object, by calling the Nanme() method,
before calling the Add() method.

The parent name and the group-modified-by fields are set to the parent name
of the logged-in user; by default, this is ‘rootgroup’. The user-modified-by field
is set to the name of the logged-in user. Any other fields not specified in the
object will become 0 or NULL in the database.

See “Adding Members” on page 136.
The Name() method on page 152.

Change()

Changes a member record in the database.
EcxMenber & Change(voi d);
A reference to this member object.

This method updates the last record retrieved by calling the object’s Get (),

Li st (), or Next () method. Administrators may change any field for which a
mutator method is provided. Non-administrators can only change the contact
information in their own record. Specifically, a non-administrator cannot
change the contents of the trusted, active, parent name, or isGroup fields.

If you do not call the object’'s Get (), Li st (), or Next () method first, the
object’'s name field, which is set by calling the Name() method, specifies the
record that is changed. In this case, the record is completely overwritten using
the object’s fields. Any fields not set in the object will be replaced by 0 or NULL
in the database.

See “Changing Members’ Fields” on page 137.

The Get () method on page 149. The Li st () method on page 150. The
Next () method on page 152. The Nane() method on page 152.

Clear()

Clears the state associated with an object, including its list.

142 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

EcxMember Class Reference

void C ear(void);

The parent name is set to ‘rootgroup’. Other fields of the object are reset to 0 or
NULL. A list contains no records.

See “Listing Members” on page 138.

ContactAddressl1()

Determines or specifies the first line of the contact’s address.

const char* Contact Address1() const;
voi d Cont act Address1(const char* addrl);

The Cont act Addr ess1() method has the following parameters:

addr 1 A pointer to a character string that contains the address line.

The first form of the method returns a pointer to a character string that contains
the address line.

Use the first form of the method to determine the first line of the address. Use
the second form to specify the address line. The Cont act Addr ess1()
method does not modify the database.

See “Adding Members” on page 136.

ContactAddress2()

Determines or specifies the second line of the contact’s address.

const char* Contact Address2() const;
voi d Cont act Address2(const char* addr?2);

The Cont act Addr ess2() method has the following parameters:

addr 2 A pointer to a character string that contains the address line.

The first form of the method returns a pointer to a character string that contains
the address line.

Chapter 10, The EcxMember Class 143

EcxMember Class Reference

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

Use the first form of the method to determine the second line of the address.
Use the second form to specify the address line. The Cont act Addr ess2()
method does not modify the database.

See “Adding Members” on page 136.

ContactCity()

Determines or specifies the second line of the contact’s city.

const char* ContactCity() const;
voi d ContactCity(const char* city);

The Cont act Ci t y() method has the following parameters:

city A pointer to a character string that contains the city.

The first form of the method returns a pointer to a character string that contains
the city.

Use the first form of the method to determine the city. Use the second form to
specify the city. The Cont act Ci t y() method does not modify the database.

See “Adding Members” on page 136.

ContactCompany()

Determines or specifies the contact’s company.

const char* Contact Conpany() const;
voi d Cont act Conpany(const char * conpany);

The Cont act Conpany() method has the following parameters:

conpany A pointer to a character string that contains the company
name.

The first form of the method returns a pointer to a character string that contains
the company name.

144 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

EcxMember Class Reference

Use the first form of the method to determine the company name. Use the
second form to specify the company name. The Cont act Conpany() method
does not modify the database.

See “Adding Members” on page 136.

ContactCountry()

Determines or specifies the contact’s country.

const char* Contact Country() const;
voi d Cont act Country(const char* country);

The Cont act Count ry() method has the following parameters:

country A pointer to a character string that contains the country name.
The first form of the method returns a pointer to a character string that contains
the country name.

Use the first form of the method to determine the country. Use the second form
to specify the country. The Cont act Count r y() method does not modify the
database.

See “Adding Members” on page 136.

ContactEmailld()

Determines or specifies the contact’s e-mail address.

const char* ContactEnmmilld() const;
voi d Contact Email I d(const char* emmil | D);

The Cont act Enai | | d() method has the following parameters:

emai |l I D A pointer to a character string that contains the e-mail address.

The first form of the method returns a pointer to a character string that contains
the e-mail address.

Chapter 10, The EcxMember Class 145

EcxMember Class Reference

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

Use the first form of the method to determine the e-mail address. Use the
second form to specify the e-mail address. The Cont act Enai | | d() method
does not modify the database.

See “Adding Members” on page 136.

ContactFax()

Determines or specifies the contact’s fax number.

const char* ContactFax() const;
voi d Cont act Fax(const char* fax);

The Cont act Fax() method has the following parameters:

f ax A pointer to a character string that contains the fax number.
The first form of the method returns a pointer to a character string that contains
the fax number.

Use the first form of the method to determine the fax number. Use the second
form to specify the fax number. The Cont act Fax() method does not modify
the database.

See “Adding Members” on page 136.

ContactName()

Determines or specifies the name of the contact person for this member.

const char* ContactNane() const;
voi d Cont act Name(const char* nane);

The Cont act Nane() method has the following parameters:
name A pointer to a character string that contains the contact’s name.

The first form of the method returns a pointer to a character string that contains
the name.

146 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

EcxMember Class Reference

Use the first form of the method to determine the contact's name. Use the
second form to specify the name. The Cont act Nane() method does not
modify the database.

See “Adding Members” on page 136.

ContactPhone()

Determines or specifies the contact’s phone number.

const char* Contact Phone() const;
voi d Cont act Phone(const char* phone);

The Cont act Phone() method has the following parameters:

phone A pointer to a character string that contains the phone number.
The first form of the method returns a pointer to a character string that contains
the phone number.

Use the first form of the method to determine the phone number. Use the
second form to specify the phone number. The Cont act Phone() method
does not modify the database.

See “Adding Members” on page 136.

ContactState()

Determines or specifies the contact’s state.

const char* ContactState() const;
voi d Contact State(const char* state);

The Cont act St at e() method has the following parameters:

state A pointer to a character string that contains the state.

The first form of the method returns a pointer to a character string that contains
the state.

Chapter 10, The EcxMember Class 147

EcxMember Class Reference

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

Syntax
Returns

Discussion

Use the first form of the method to determine the state. Use the second form to
specify the state. The Cont act St at e() method does not modify the
database.

See “Adding Members” on page 136.

ContactZip()

Determines or specifies the contact’s zip or postal code.

const char* ContactZip() const;
voi d ContactZi p(const char* zip);

The Cont act Zi p() method has the following parameters:

zZip A pointer to a character string that contains the zip or postal
code.

The first form of the method returns a pointer to a character string that contains
the zip or postal code.

Use the first form of the method to determine the zip or postal code. Use the
second form to specify the zip or postal code. The Cont act Zi p() method
does not modify the database.

See “Adding Members” on page 136.

Delete()

Deletes a member from the database.
EcxMenber & Del et e(voi d);
A reference to this member object.

You must be an administrator and be logged in before calling this method. You
must specify the member’s name in the object by calling the Narme() method

before you call the Del et e() method. After this method executes, the object
is reset; the parent name is set to ‘rootgroup’ and other fields of the object are
reset to 0 or NULL. A list contains no records.

148 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Warning

Example

See also

Syntax

Parameters

Returns

Discussion

Example

Syntax
Returns

Discussion

Example

See also

EcxMember Class Reference

In addition to deleting the membership record, the Del et e() method also
deletes the partnerships and services associated with the member.

See “Deleting Members” on page 139.

The Name() method on page 152.

Description()

Determines or specifies the member’s description.

const char* Description() const;
voi d Description(const char* desc);

The Descri ption() method has the following parameters:

desc A pointer to a character string that contains the description.

The first form of the method returns a pointer to a character string that contains
the description.

Use the first form of the method to determine the description. Use the second
form to specify the description. The Descri pti on() method does not modify
the database.

See “Adding Members” on page 136.

Get()

Retrieves a member record from the database.
EcxMenber & Get (voi d);
A reference to this member object.

Administrators may retrieve any membership record. Non-administrators can
only retrieve their own record. You must specify the member’s name in the
object by calling the Nane() method before you call the Get () method.

See “Changing Members’ Fields” on page 137.
The Name() method on page 152.

Chapter 10, The EcxMember Class 149

EcxMember Class Reference

Syntax

Parameters

Returns

Discussion

Example

Syntax
Returns

Discussion

Example

See also

IsGroup()

Determines or specifies whether the member is a group or individual.

unsigned int IsGoup() const;
voi d I sGoup(const unsigned int status);

The | sGroup() method has the following parameters:

status An unsigned integer that specifies whether the member is a
group.

The first form of the method returns an unsigned integer that contains the
status.

Use the first form of the method to determine whether the member is a group.
Use the second form to specify whether the member is a group. A status of
TRUE (1) indicates that the member is a group. A status of FALSE (0) indicates
that the member is an individual. The | sG- oup() method does not modify the
database.

See “Adding Members” on page 136.

List()

Retrieves a list of member records from the database.
EcxMenber & Li st (void);

A reference to this member object.

If you specify the member’s name in the object by calling the Name() method
first, only the record matching with the specified name will be retrieved. After
calling the Li st () method, the member object contains fields from the first
record from the list.

See “Listing Members” on page 138.
The Name() method on page 152.

150 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Returns

Syntax

Returns

Syntax

Returns

Syntax

Returns

Discussion

Example

See also

EcxMember Class Reference

ModByGroup()

Determines the group that last modified the record.
const char* MdByG oup() const;

A pointer to a character string that contains the group.

ModByUser()

Determines the user that last modified the record.
const char* MdByUser () const;

A pointer to a character string that contains the user name.

ModDt()

Determines the date the record was last modified.
const char* MdDt () const;

A pointer to a character string that contains the date.

More()

Determines whether more records are left in the list.
| ong More(void);

A long integer that contains the number of records not yet accessed from the
list.

After calling the Li st () method and before calling the Next () method, the
Mor e() method returns the total number of records in the list. All records have
been accessed when the Mor e() method returns 0.

See “Listing Members” on page 138.
The Li st () method on page 150. The Next () method on page 152.

Chapter 10, The EcxMember Class 151

EcxMember Class Reference

Syntax

Parameters

Returns

Discussion

Example

Syntax
Returns

Discussion

Warning

Example

See also

152 Netscape ECXpert Site Administrator’s Handbook

Name()

Determines or specifies the name of the member.

const char* Nane() const;
voi d Nanme(const char* nane);

The Name() method has the following parameters:

nane A pointer to a character string that contains the member’s

name.
The first form of the method returns a pointer to a character string that contains
the name.

Use the first form of the method to determine the member’s name. Use the
second form to specify the name. The Name() method does not modify the
database.

See “Adding Members” on page 136.

Next()

Associates the object with the next record in the list.
EcxMenber & Next (voi d);
A reference to this member object.

The Next () method sets the fields in the object to match those in the next
record in the list. The Next () method decrements the number of records not
yet accessed, which is returned by the Mor e() method.

Do not call the Next () method if the Mor e() method returns a value less
than 1; the results are unpredictable.

See “Listing Members” on page 138.
The Mor e() method on page 151.

02 July 99

02 July 99

Syntax

Parameters

Returns

Discussion

Example

Syntax

Returns

Syntax

Parameters

EcxMember Class Reference

ObjPerm()

Determines or specifies the record’s access permissions.

unsigned int CbjPerm() const;
voi d Obj Pern{const unsigned int perm ssions);

The Obj Per m() method has the following parameters:

per ni ssi ons An unsigned integer that specifies the access permissions.
The first form of the method returns an unsigned integer that contains the
permissions.

Use the first form of the method to determine the record’s access permissions.
Use the second form to specify the permissions. The Gbj Per m() method does
not modify the database.

See “Adding Members” on page 136.

ParentName()

Determines the name of the parent member.
const char* Parent Nane() const;

A pointer to a character string that contains the name.

Password()

Determines or specifies the member’s password.

const char* Password() const;
voi d Password(const char* passwd);

The Passwor d() method has the following parameters:

passwd A pointer to a character string that contains the password.

Chapter 10, The EcxMember Class 153

EcxMember Class Reference

Returns

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

See also

Syntax

Parameters

Returns

154 Netscape ECXpert Site Administrator’s Handbook

The first form of the method returns a pointer to a character string that contains
the password.

Use the first form of the method to determine the member’s password. Use the
second form to specify the password. The Passwor d() method does not
modify the database.

See “Adding Members” on page 136.

SetLogin()

Allows the object to access the database.
EcxMenber & Set Logi n(EcxLogi n& | ogi n);
The Set Logi n() method has the following parameters:

| ogin A reference to a valid EcxLogi n object

A reference to this member object.

If you do not use the form of the constructor that accepts a login object, you
must call the Set Logi n() method before using this object.

See “Creating Member Objects” on page 136.

The EcxMenber constructor on page 140. The EcxLogi n class on page 127.

Trusted()

Determines or specifies whether the member is trusted.

unsigned int Trusted() const;
voi d Trusted(const unsigned int status);

The Trust ed() method has the following parameters:

status An unsigned integer that specifies whether the member is a

trusted member.

The first form of the method returns an unsigned integer that contains the
status.

02 July 99

02 July 99

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

See also

EcxMember Class Reference

Use the first form of the method to determine whether the member is a trusted
member. Use the second form to specify whether the member is a trusted
member. A status of TRUE (1) indicates that the member is a trusted member. A
status of FALSE (0) indicates that the member is not a trusted member. The

Tr ust ed() method does not modify the database.

See “Adding Members” on page 136.

Type()

Determines or specifies the type of member.

unsi gned int Type() const;
voi d Type(const unsigned int type);

The Type() method has the following parameters:

type An unsigned integer that specifies whether the member is an
administrator.

The first form of the method returns an unsigned integer that contains the type.

Use the first form of the method to determine whether the member is an admin-
istrator. Use the second form to specify whether the member is an adminis-
trator. A type of ADM NI STRATOR indicates that the member is an
administrator. A type of MEMBER indicates that the member is not an adminis-
trator. The Type() method does not modify the database.

See “Adding Members” on page 136.
“Class Variables” on page 140.

Chapter 10, The EcxMember Class 155

EcxMember Class Reference

156 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxAddresses Class

his chapter describes the EcxAddr esses class, which defines objects that
represent trading addresses. This chapter contains the following sections:

< About the EcxAddresses Class
= Using the EcxAddresses Class

e EcxAddresses Class Reference

02 July 99 Chapter 11, The EcxAddresses Class 157

About the EcxAddresses Class

About the EcxAddresses Class

Methods

The EcxAddr esses class represents trading address records in an ECXpert
database. Administrators can manipulate any address record; non-administrators
can only add and delete their own address records. A user must be logged in to
the database before accessing a record.

Summary list:

Constructor and destructor

EcxAddr esses() Creates an EcxAddr esses object.
~EcxAddr esses() Destroys an EcxAddr esses object.
Allowing database access

Set Logi n() Allows the object to access the database.
Adding and deleting address records

Add() Adds an address record to the database.

Del et e() Deletes an address record from the database.
Listing address records

List() Retrieves a list of address records from the database.
Mor e() Determines whether more records are left in the list.
Next () Associates the object with the next record in the list.

Resetting an object’s state
Cl ear () Clears the state associated with an object, including its list.
Accessing key fields

Menber () Determines or specifies a member.
Qual () Determines or specifies a member’s trading address qualifier.
Qual 1 d() Determines or specifies a member’s trading address.

Using the EcxAddresses Class

The following example shows how to create an EcxAddr esses object and set
the login to provide database access for the object.

BOOL | nport Mad: : MakeAddr essObj ()
{

m pLogi n = new EcxLogi n();

158 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxAddresses Class Reference

if (mpLogin == NULL)

{
Set Gener al Error (1 NSUFFI Cl ENT_MEMORY, m fdiscard);
return FALSE;

else if (mpLogin->Errnun())

{
Print EcxMessage("EcxLogin()", mpLogin, 0, 0);
m pLogi n = NULL;
return FALSE;
}
if ((mpLogin->Logi n(GetUserNane(), GetPassword())).Errnun())
{
Print EcxMessage("EcxLogi n()", mpLogin, 0, 0);
return FALSE;
}

m _pAddress = new EcxAddresses();

if (mpAddress == NULL)

{
Set Gener al Error (I NSUFFI Cl ENT_MEMORY, m fdiscard);
return FALSE;

else if (mpAddress ->Errnun())

{
Print EcxMessage(" EcxAddresses()", m pAddress, 0, 0);
m _pAddress = NULL;
return FALSE;

}

if ((m_pAddress ->SetLogin(*mpLogin)).Errnun())

{
Pri nt EcxMessage(" EcxAddresses()", m pAddress, 0, 0);
return FALSE;

}

return TRUE;

EcxAddresses Class Reference

Interface ecxaddr esses. h
Superclasses EcxBase
Subclasses None

Friend Classes None

02 July 99 Chapter 11, The EcxAddresses Class 159

EcxAddresses Class Reference

Syntax

Syntax

Discussion

Example

See also

Syntax

Discussion

See also

cl ass EcxAddresses : public EcxBase { ... };

Constructor and Destructor

EcxAddresses()

Creates an EcxAddr esses object.

EcxAddr esses(voi d);
EcxAddr esses(EcxLogi n& | ogi n);

The first form of the constructor allows you to create a stack-based object. The
second form of the constructor requires that you create an EcxLogi n object
before you create this object.

See “Using the EcxAddresses Class” on page 158.
The Set Logi n() method on page 164. The EcxLogi n class on page 127.

~EcxAddresses()

Destroys an EcxAddr esses object.
~EcxAddr esses(voi d);

The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Cl ear () method. The destructor
does not destroy the associated EcxLogi n object.

The C ear () method on page 161.

Methods

This section describes the methods of the EcxAddr esses class.

160 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax
Returns

Discussion

See also

Syntax

Syntax
Returns
Discussion

Warning

EcxAddresses Class Reference

Add()

Adds an address record to the database.
EcxAddr esses& Add(voi d);
A reference to this member object.

Non-administrators can only add addresses for themselves. Administrators can
add addresses for any member. You must specify the member’s name in the
object, by calling the Menber () method, before calling the Add() method.
The combination of qualifier and qualifier ID must be unique for the member.

The parent name and the group-modified-by fields are set to the parent name
of the logged-in user; by default, this is ‘rootgroup’. The user-modified-by field
is set to the name of the logged-in user. Any other fields not specified in the
object will become 0 or NULL in the database.

The Member () method on page 162.

Clear()

Clears the state associated with an object, including its list.

void C ear(void);

Delete()

Deletes an address from the database.

EcxAddr esses& Del et e(voi d);

A reference to this member object.

You must be an administrator and be logged in before calling this method.

All records whose qualifiers and qualifier IDs match the fields of this object are
deleted; the member name is not used.

Chapter 11, The EcxAddresses Class 161

EcxAddresses Class Reference

List()
Retrieves a list of address records from the database.
Syntax EcxAddr esses& List(void);
Returns A reference to this member object.

Discussion After calling the Li st () method, the address object contains fields from the
first record from the list.

Member()

Determines or specifies the name of the member.

Syntax const char* Menber () const;
voi d Menmber (const char* nane);

Parameters The Menber () method has the following parameters;
name A pointer to a character string that contains the member’s
name.
Returns The first form of the method returns a pointer to a character string that contains

the name.

Discussion Use the first form of the method to determine the member’s name. Use the
second form to specify the name. The Menber () method does not modify the
database.

More()

Determines whether more records are left in the list.
Syntax | ong More(void);

Returns A long integer that contains the number of records not yet accessed from the
list.

162 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Discussion

Syntax
Returns

Discussion

Warning

See also

Syntax

Parameters

Returns

Discussion

02 July 99

EcxAddresses Class Reference

After calling the Li st () method and before calling the Next () method, the
Mor e() method returns the total number of records in the list. All records have
been accessed when the Mor e() method returns 0.

Next()

Associates the object with the next record in the list.
EcxAddr esses& Next (voi d);
A reference to this member object.

The Next () method sets the fields in the object to match those in the next
record in the list. The Next () method decrements the number of records not
yet accessed, which is returned by the Mor e() method.

Do not call the Next () method if the Mor e() method returns a value less
than 1; the results are unpredictable.

The Mor e() method on page 162.

Qual()

Determines or specifies a member’s trading address qualifier.

const char* Qual () const;
voi d Qual (const char* qualifier);

The Qual () method has the following parameters:

qualifier A pointer to the character string that contains the qualifier.
The first form of the method returns a pointer to a character string that contains
the qualifier.

Use the first form of the method to determine the qualifier. Use the second
form to specify the qualifier. The Qual () method does not modify the
database.

Chapter 11, The EcxAddresses Class 163

EcxAddresses Class Reference

Syntax

Parameters

Returns

Discussion

Syntax

Parameters

Returns

Discussion

See also

Qualld()

Determines or specifies a member’s trading address.

const char* Qualld() const;
voi d Qual ld(const char* id);

The Qual 1 d() method has the following parameters:

id A pointer to the character string that contains the trading
address.

The first form of the method returns a pointer to a character string that contains

the trading address.

Use the first form of the method to determine the trading address. Use the
second form to specify the trading address. The Qual | d() method does not
modify the database.

SetLogin()

Allows the object to access the database.

EcxAddr esses& Set Logi n(EcxLogi n& | ogi n);

The Set Logi n() method has the following parameters:

| ogin A reference to a valid EcxLogi n object

A reference to this member object.

If you do not use the form of the constructor that accepts a login object, you
must call the Set Logi n() method before accessing this object.

The EcxAddr esses constructor on page 160. The EcxLogi n class on
page 127.

164 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Chapter

Partnership-Related Classes

his chapter describes the EcxPar t ner shi p class, which represents a
view of partnership records and related standards information, group, and
document information records in an ECXpert database. This chapter also
describes the EcxPar t ner | d class, which represents key values for
EcxPar t ner shi p objects. This chapter contains the following sections:

About the EcxPartnership Class
Using the EcxPartnership Class
EcxPartnership Class Reference
About the EcxPartnerID Class

EcxPartnerID Class Reference

Chapter 12, Partnership-Related Classes 165

About the EcxPartnership Class

About the EcxPartnership Class

Methods

The EcxPar t ner shi p class represents a view on the following kinds of
records in an ECXpert database:

= partnerships

= EDI standards information
= partnership groups

= document types

A record in the view represents a partnership record whose ID matches a
standards information ID, a group ID and a document type ID and whose
group type matches the document type.

Only administrators can add, change, or delete records using this view. An
administrator can retrieve any record from the view; a non-administrator can
only retrieve records from the view that includes the user as either a sender or
receiver. A user must be logged in to the database before accessing a record
through the view.

Summary list:

Constructor and destructor

EcxPart nershi p() Creates an EcxPar t ner shi p object.
~EcxPar t ner shi p() Destroys an EcxPar t ner shi p object.
Allowing database access

Set Logi n() Allows the object to access the database.
Adding, retrieving, changing and deleting partnership view-related records

Add() Adds partnership view-related records to the data-
base.

Get () Retrieves partnership view-related records from the
database.

Change() Changes partnership view-related records in the data-
base.

Del et e() Deletes partnership view-related records from the
database.

Listing partnership records

166 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Li st ()

Mor e()

Next ()

Resetting an object’s state
Clear ()

Accessing key fields
Partner!d()
DocType()

G oupType()

Accessing partnership information
Sender Narre()
Sender Qual ()

Sender Qual 1 d()
Sender CertificateType()
Recei ver Name()

Recei ver Qual ()

Recei ver Qual 1 d()
Recei verCertificateType()
Active()

Security()

Descri ption()

Accessing standards information
St andar dNane()

St andar dVer si on()

St andar dRel ease()

I nt chngLast Cont r ol Nunber ()

About the EcxPartnership Class

Retrieves a list of partnership view-related records
from the database.

Determines whether more records are left in the list.
Associates the object with the next record in the list.

Clears the state associated with an object, including its
list.

Determines or specifies the partnership ID.
Determines or specifies the kind of EDI document.

Determines or specifies the kind of EDI documents in
the group.

Determines or specifies the sender’'s member name.

Determines or specifies the sender’s trading address
qualifier.

Determines or specifies the sender’s trading address.
Determines or specifies the sender’s certificate type.
Determines or specifies the receiver's member name.

Determines or specifies the receiver’s trading address
qualifier.

Determines or specifies the receiver’s trading address
Determines or specifies the receiver’s certificate type.

Determines or specifies whether the partnership is
active.

Determines or specifies the kind of security.
Determines or specifies the partnership’s description.

Determines or specifies the name of the EDI standard.

Determines or specifies the standard’s version num-
ber.

Determines or specifies the standard’s release num-
ber.

Determines or specifies the last interchange control
number generated.

Chapter 12, Partnership-Related Classes 167

About the EcxPartnership Class

I nt chngLock()

I nt chngGener at eAck()

I nt chngAckWai t Peri od()

Test Producti onFl ag()

Segnent Ter mi nat or ()

El ement Separ at or ()

SubEl ement Separ at or ()

Deci mal Poi nt Char acter ()
Rel easeChar acter ()

Qut St andar d()

Qut Ver si on()

Qut Rel ease()

GenOpt Env()

Accessing group information
GrouplLast Cont r ol Nunber ()

GrouplLock()

GroupGener at eDocAck()

Sndr AppQual ()

Sndr AppCode()
Revr AppQual ()

Rcvr AppCode()

Determines or specifies whether the document has
been read at the interchange level.

Determines or specifies whether to generate inter-
change acknowledgments flags.

Determines or specifies the number of minutes to wait
before the acknowledgment becomes overdue.

Determines or specifies whether the partnership is
used for testing or production.

Determines or specifies the segment terminator char-
acter.

Determines or specifies the data element terminator
character.

Determines or specifies the data subelement termina-
tor character.

Determines or specifies the decimal point character.
Determines or specifies the release character.

Determines or specifies the interchange standard user
wishes to appear in bundled EDI documents.

Determines or specifies the interchange version user
wishes to appear in bundled EDI documents

Determines or specifies the interchange release user
wishes to appear in bundled EDI documents.

Determines or specifies the enveloping options.

Determines or specifies the last group control number
generated.

Determines or specifies whether the document has
been read at the group level.

Determines or specifies the to generate group
acknowledgments flags

Determines or specifies the sending member main
trading address.

Determines or specifies the application sender code.

Determines or specifies the receiving member main
trading address.

Determines or specifies the application receiver code.

Accessing document type specific information

168 Netscape ECXpert Site Administrator’s Handbook

02 July 99

DocPriority()

MapNane()
MapDi rection()

AckExpect ed()

DocLast Cont r ol Nurber ()

DocLock()

Pri mar yXport Type()

Pri mar yXpor t Par an()

Secondar yXport Type()

Secondar yXport Par anm()

SendType()

Del et eWai t Peri od()

Archi veWi t Peri od()

Pr eEnvel oped()

Using the EcxPartnership Class

Determines or specifies the document processing pri-
ority.

Determines or specifies the map file name.
Determines or specifies the document translation
type.

Determines or specifies the number of minutes to wait
before an acknowledgment becomes overdue.

Determines or specifies the last document control
number generated.

Determines or specifies whether the document has
been read.

Determines or specifies the primary transport proto-
col.

Determines or specifies the primary transport protocol
parameter.

Determines or specifies the secondary transport proto-
col.

Determines or specifies the secondary transport proto-
col parameter.

Determines or specifies when the document is to be
sent.

Determines or specifies the number of days to retain
documents before deleting them.

Determines or specifies the number of days to retain
documents before archiving them.

Determines or specifies whether documents are
preenveloped.

Using the EcxPartnership Class

The following sections show how to

= create partnership objects

= add partnerships to the database

« list partnerships in the database

02 July 99

Chapter 12, Partnership-Related Classes 169

Using the EcxPartnership Class

= delete partnerships from the database

Creating Partnership Objects

The following example shows how to create an EcxPar t ner shi p object and
how to allow access to the database by calling the object’s Set Logi n()
method:

EcxPart nershi p * make_part nershi pobj (EcxLogin * pLogin) {
EcxPartnership * pPartnership = NULL;

i f((pPartnership = new EcxPartnership())->Errnun()) {
cout << "EcxPartnership Object Error:" << endl;
cout << "\tErrnum " << pPartnership->Errnun() << endl;
cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
cout << endl;
return(NULL) ;

}

i f((pPartnership->SetLogin(*pLogin)).Errnum()) {
cout << "EcxPartnership.SetLogin() Failed:" << endl;
cout << "\tErrnum " << pPartnership->Errnun() << endl;
cout << "\tErrnsg: " << pPartnership->Errnmsg() << endl;
cout << endl;
del et e pPartnership;
return(NULL) ;

}

return(pPartnership);

}

Alternatively, you can pass the login object to the EcxPar t ner shi p
constructor without having to call Set Logi n() .

Adding Partnerships

The following example shows how to add records associated with a
partnership view to the database. An administrator’s login must be associated
with the object you want to add.

i nt add_partnershi p(EcxPartnership *pPartnership,
const char *nanel,
const char *nane2,

170 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Using the EcxPartnership Class

const char *doctype) {

pPar t ner shi p->Cl ear () ;

pPar t ner shi p- >Sender Nanme(nanel) ;
pPar t ner shi p- >Sender Qual (" NONE") ;
pPar t ner shi p- >Sender Qual | d(nanel);
pPar t ner shi p- >Recei ver Name(nane2) ;
pPar t ner shi p- >Recei ver Qual (" NONE") ;
pPart ner shi p- >Recei ver Qual | d(nane2) ;
pPar t ner shi p- >St andar dName(" X") ;
pPar t ner shi p- >St andar dVer si on("3");
pPart ner shi p- >St andar dRel ease("0");
pPar t ner shi p- >Gr oupType(" FF");
pPar t ner shi p- >DocType(doct ype);
pPart ner shi p->Acti ve(TRUE) ;

i f((pPartnership->Add()).Errnum()) {
cout << "EcxPartnership.add() Failed for :";

cout << nanel << ":" << npanme2 << ":" << doctype << ":" << endl;
cout << "\tErrnum " << pPartnership->Errnun() << endl;
cout << "\tErrnsg: " << pPartnership->Errnmsg() << endl;
return(pPartnership->Errnun());
}
cout << "*** Added partnership :";
cout << nanel << ":" << npanme2 << ":" << doctype << ":" << endl;
return(0);

Listing Partnerships

The following example shows how to retrieve records for a list of views. In this
example, all view-related records are retrieved for administrators. For non-
administrators, this example retrieves all view-related records for views in
which the user is either the sender or receiver. The following rules apply to the
Li st () method, as well:

If neither the sender or receiver is specified, the Li st () method retrieves
all view-related records for views in which the user is either the sender or
receiver.

If only the sender is specified, the Li st () method retrieves all view-
related records for views in which the user is the sender.

Chapter 12, Partnership-Related Classes 171

Using the EcxPartnership Class

Warning

If only the receiver is specified, the Li st () method retrieves all view-
related records for views in which the user is the receiver.

If both the sender and receiver are specified, the Li st () method retrieves
all view-related records for views that match both the sender and receiver;
in which case, the user must be either the receiver or sender.

int |ist(EcxPartnership *pPartnership) {

}

pPart nershi p->Cl ear();

i f((pPartnership->List()).Errnum()) {
cout << "EcxPartnership.List() Failed:" << endl;
cout << "\tErrnum " << pPartnership->Errnun() << endl;
cout << "\tErrnsg: " << pPartnership->Errnmsg() << endl;
return(pPartnership->Errnun());

}

cout << "*** |jsting partnerships" << pPartnership->Mre();
cout << " records found. ***" << endl;

whi | e(pPart nershi p->Mre()) {

cout << pPartnershi p->Sender Nane() << "ty
cout << pPartnershi p->Recei ver Nane() << "ty
cout << pPartnershi p->DocType() << "Ity
cout << pPartnershi p->Standar dNane() << "ty
cout << pPartnership->StandardVersion() << ":";
cout << pPartnershi p->G oupType() << endl ;

pPart ner shi p- >Next () ;
}

return(0);

The following example shows how to retrieve records for two lists of views.
The sender is used to filter the first list. The receiver is used to filter the second
list. For administrators, the example shows how to retrieve all view-related
records that match the respective sender and receiver. For non-administrators,
the example shows how to retrieve these records as long as the user is the
sender in the first list and the receiver in the second list.

For non-administrators, calling the Li st () method in this example mutates the
sender or receiver name to match the user name if the names do not already
match.

172 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Using the EcxPartnership Class

int list_menber(EcxPartnership *pPartnership, const char *unanme) ({

pPart ner shi p->Cl ear ();

pPar t ner shi p- >Sender Nanme(unane) ;

i f((pPartnership->List()).Errnum()) {
cout << "EcxPartnership.List(" << unane << ",NULL) Failed:" << endl;

cout << "\tErrnum

cout

<<

"\tErrmnsg:

return(pPartnershi p->Errnun());

}

cout << "*** |jsting partnerships where sender is

cout <<

" << pPartnership->Mre() << "

whi | e(pPart nershi p->Mre()) {
cout << pPartnershi p->Sender Nane()

cout
cout
cout
cout
cout

<<
<<
<<
<<
<<

pPar t ner shi p- >Recei ver Nane()
pPar t ner shi p- >DocType()

pPar t ner shi p- >St andar dNane()
pPar t ner shi p- >St andar dVer si on()
pPar t ner shi p- >Gr oupType()

pPar t ner shi p- >Next () ;

}

pPart ner shi p->Cl ear ();

pPart ner shi p- >Recei ver Nane(unane) ;

i f((pPartnership->List()).Errnum()) {
cout << "EcxPartnership.List(NULL," << uname << ") Failed:" << endl;

"\tErrnum " << pPartnership->Errnum) << endl;

"\tErrnmsg: " << pPartnership->Errnmsg() << endl;

return(pPartnership->Errnum());

cout
cout

}

<<
<<

" << pPartnership->Errnun() << endl;
<< pPartnership->Errnmsg() << endl;

<< unane;
records found. ***" << endl;

cout << "*** |jsting partnerships where receiver is " << unane;

cout <<

" << pPartnership->Mre() << "

whi | e(pPartnershi p->Mre()) {

cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<

pPar t ner shi p- >Sender Nare()
pPar t ner shi p- >Recei ver Nane()
pPar t ner shi p- >DocType()

pPar t ner shi p- >St andar dNane()
pPar t ner shi p- >St andar dVer si on()
pPar t ner shi p- >Gr oupType()

pPar t ner shi p- >Next () ;

records found. ***" << endl;

Chapter 12, Partnership-Related Classes 173

EcxPartnership Class Reference

}
cout << endl;

return(0);

}

Deleting Partnerships

The following example shows how to delete the records associated with a
partnership view from the database. All records matching the specified sender
name, receiver name, and document type are deleted. An administrator’s login
must be associated with the object you want to delete.

i nt del _partnershi p(EcxPartnership *pPartnership,
const char *nanel,
const char *nane2,
const char *doctype) {

pPart ner shi p->Cl ear();

pPar t ner shi p- >Sender Nane(nanel) ;
pPart ner shi p- >Recei ver Name(nane2) ;
pPart ner shi p- >DocType(doct ype);

i f((pPartnership->Delete()).Errnun()) {
cout << "EcxPartnership.Delete() Failed for

cout << nanel << ":" << pane2 << ":" << doctype << ":" << endl;
cout << "\tErrnum " << pPartnership->Errnun() << endl;
cout << "\tErrmsg: " << pPartnership->Errmsg() << endl;
return(pPartnership->Errnum());
}
cout << "*** Deleted partnership :";
cout << nanel << ":" << npanme2 << ":" << doctype << ":" << endl;
return(0);

EcxPartnership Class Reference

Interface ecxpartnership.h

Superclasses EcxBase

174 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Subclasses

Friend Classes

02 July 99

Syntax

Syntax

None

None

cl ass EcxPartnership :

Class Variables

publi ¢ EcxBase {

EcxPartnership Class Reference

The following class variables allow you to identify the member as either an
administrator or an ordinary member:

stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati
stati

o O O o o o0 o0 o0 o o o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 o o o o0 o0

i nt
i nt
i nt
i nt
i nt
i nt
int
int
int
i nt
i nt
i nt
int
int
int
i nt
i nt
i nt
int
int
int
i nt
i nt
i nt
int
int

SENDTYPE_UNKNOWK;
SENDTYPE_| MVEDI ATE;
SENDTYPE_ONETI ME;
SENDTYPE_PERI ODI G;
SECURI TY_PLAI N;
SECURI TY_ENCRYPTED;
SECURI TY_SI GNED;
SECURI TY_SI GNEDANDENCRYPTED;
PRI ORI TY_UNKNOWK;
PRI ORI TY_HI GH;

PRI ORI TY_MEDI UM
PRI ORI TY_LOW
CERTTYPE_UNKNOWK;
CERTTYPE_SELF;
CERTTYPE_VERI S| GNL;
CERTTYPE_VERI Sl G\2;
CERTTYPE_VERI S| G\3;
ENVELOPE._UNKNOWK;
ENVELOPE._NONE;
ENVELOPE_REGULAR;
ENVELCPE_EDI ;
XLATTYPE_UNKNOVR;
XLATTYPE_| NBOUND;
XLATTYPE_OUTBOUND;
XLATTYPE_EDI 2ED! ;
XLATTYPE_APP2APP;

Chapter 12, Partnership-Related Classes 175

EcxPartnership Class Reference

static int XLATTYPE_NONE;

SENDTYPE_ UNKNOVWN

SENDTYPE_| MVEDI ATE

SENDTYPE_ONETI ME

SENDTYPE_PERI ODI C

SECURI TY_PLAI N

SECURI TY_ENCRYPTED

SECURI TY_SI GNED

SECURI TY_SI GNEDANDENCRYPTED

PRI ORI TY_UNKNOWN

PRI ORI TY_HI GH

PRI ORI TY_MEDI UM

PRI ORI TY_LOW

CERTTYPE_UNKNOWN

CERTTYPE_SELF

CERTTYPE_VERI SI GN1

CERTTYPE_VERI SI GN2

CERTTYPE_VERI SI GN3

ENVEL OPE_UNKNOWN

ENVELOPE_NONE

ENVELOPE_REGULAR

176 Netscape ECXpert Site Administrator’s Handbook

Unknown send type.

Send immediately.

Send once.

Send periodically.

No security; base-64 encoding only.
Encrypted with receiver’s public key.

Signed with sender’s private key.

Signed with sender’s private key, then encrypted with

receiver’s public key.
Unknown priority.

High priority.

Medium priority.

Low priority.

Unknown certificate type.
Self-signed certificate type.
VeriSign class-1 certificate type.
VeriSign class-2 certificate type.

VeriSign class-3 certificate type.

Unknown envelope status for document.

No envelope for document.

Enveloped document.

02 July 99

Syntax

Parameters

Discussion

Example

See also

02 July 99

EcxPartnership Class Reference

ENVELOPE_EDI Preenveloped EDI document.
XLATTYPE_UNKNOWN Unknown translation.

XLATTYPE_| NBOUND EDI-to-application translation.
XLATTYPE_OUTBOUND Application-to-EDI translation
XLATTYPE_EDI 2EDI EDI-to-EDI translation.
XLATTYPE_APP2APP Application-to-application translation.
XLATTYPE_NONE No translation; passthrough mode.

Constructor and Destructor

EcxPartnership()

Creates an EcxPar t ner shi p object.

EcxPar t ner shi p(voi d);
EcxPar t ner shi p(EcxLogi n& | ogi n);

The constructor has the following parameters:
| ogin The login object to associate with this partnership object.
The first form of the constructor allows you to create a stack-based object. The

second form of the constructor requires that you create an EcxLogi n object
before you create this object.

See “Creating Partnership Objects” on page 170.

The Set Logi n() method on page 205. The EcxLogi n class on page 127.

~EcxPartnership()

Destroys an EcxPar t ner shi p object.

Chapter 12, Partnership-Related Classes 177

EcxPartnership Class Reference

Syntax virtual ~EcxPartnership(void);

Discussion The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Cl ear () method. The destructor
does not destroy the associated EcxLogi n object.

Seealso The Cl ear () method on page 181.

Methods

This section describes the methods of the EcxPar t ner shi p class.

AckExpected()

Determines or specifies the number of minutes to wait before an acknowl-
edgment becomes overdue.

Syntax unsigned int AckExpected() const;
voi d AckExpected (const unsigned int& mnutes);

Parameters The AckExpect ed() method has the following parameters:
m nut es An unsigned integer that specifies the number of minutes.
Returns The first form of the method returns an unsigned integer that contains the
number of minutes to wait before an acknowledgment becomes overdue.

Discussion Use the first form of the method to determine the number of minutes to wait
before an acknowledgment becomes overdue. Use the second form to specify
the number of minutes. The AckExpect ed() method does not modify the
database.

Active()

Determines or specifies whether the partnership is active.

Syntax unsigned int Active() const;
voi d Active(const unsigned int status);

178 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxPartnership Class Reference

Parameters The Acti ve() method has the following parameters:

status An unsigned integer that specifies whether the partnership is
active.

Returns The first form of the method returns an unsigned integer that contains the
status.

Discussion Use the first form of the method to determine whether the partnership is active.
Use the second form to specify whether the partnership is active. A status of
TRUE (1) indicates that the partnership is active. A status of FALSE (0) indicates
that the partnership is inactive. The Act i ve() method does not modify the
database.

Example “Adding Partnerships” on page 170.

Add()

Adds partnership view-related records to the database.
Syntax EcxPart nershi p& Add(voi d);
Returns A reference to this partnership object.

Discussion The Add() method adds a partnership record and its related standards infor-
mation, group, and document information records to the database. The Add()
method sets the partnership ID in the database and the partnership object.

You must be an administrator and be logged in before calling this method. You
must specify the sender name, receiver name, qualifier, qualifier 1D, group
type, document type, EDI standard, and the standard’s release and version
numbers in the object, before calling the Add() method.

The group-modified-by and user-modified-by fields are set to the group and
name of the logged-in user, respectively. Acknowledgment wait periods are set
to MINUTES_IN_10_YEARS. Any other fields not specified in the object will
become 0 or NULL in the database.

Example “Adding Partnerships” on page 170.

02 July 99 Chapter 12, Partnership-Related Classes 179

EcxPartnership Class Reference

See also The Sender Narme() method on page 203. The Sender Qual () method on
page 204. The Sender Qual | D() method on page 204. The Recei v-
er Nane() method on page 197. The Recei ver Qual () method on page 198.
The Recei ver Qual | D() method on page 198. The G- oupType() method
on page 187. The DocType() method on page 185.

ArchiveWaitPeriod()

Determines or specifies the number of days to retain documents before
archiving them.

Syntax unsigned int ArchiveWaitPeriod() const;
voi d ArchiveWai tPeriod (const unsigned int& days);

Parameters The Ar chi veWai t Peri od() method has the following parameters:
days An unsigned integer that specifies the number of days.
Returns The first form of the method returns an unsigned integer that contains the
number of days to retain documents before archiving them.

Discussion Use the first form of the method to determine the number of days to retain
documents before archiving them. Use the second form to specify the number
of days. The Ar chi veWi t Peri od() method does not modify the database.

Change()

Changes partnership view-related records in the database.
Syntax EcxPart nershi p& Change(voi d);
Returns A reference to this partnership object.

Discussion You must be an administrator and be logged in before calling this method. This
method updates the last record retrieved by calling the object’s Get (),
Li st (), or Next () method. Only administrators may call the Change()
method. The group-modified-by and user-modified-by fields are set to the
group and name of the logged-in user, respectively. Acknowledgment wait
periods are set to MINUTES_IN_10_YEARS. Any other fields not specified in the
object will become 0 or NULL in the database.

180 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Warning

See also

Syntax
Discussion

Example

Syntax

Parameters

Returns

Discussion

02 July 99

EcxPartnership Class Reference

If you do not call the object’'s Get (), Li st (), or Next () method first, the
object’s Partnership ID field, which is set by calling the Par t ner | D() method,
specifies the records to change. In this case, the records are completely
overwritten using the object’s fields. Any fields not set in the object will be
replaced by 0 or NULL in the database.

The Get () method on page 186. The Li st () method on page 190. The
Next () method on page 192. The Part ner | D() method on page 193.

Clear()

Clears the state associated with an object, including its list.
void C ear(void);
All fields in the object are reset to 0 or NULL. A list contains no records.

“Listing Partnerships” on page 171.

DecimalPointCharacter()

Determines or specifies the decimal point character.

const char* Deci nal Poi nt Character() const;
voi d Deci mal Poi nt Character (const char* decPt);

The Deci mal Poi nt Char act er () method has the following parameters:

decPt A pointer to a character string that contains the decimal point
character.

The first form of the method returns a pointer to a character string that contains
the decimal point character.

Use the first form of the method to determine the decimal point character. Use
the second form to specify the decimal point character. The Deci mal Poi nt -
Char act er () method does not modify the database.

Chapter 12, Partnership-Related Classes 181

EcxPartnership Class Reference

Syntax
Returns

Discussion

Warning

Example

See also

Syntax

Parameters

Returns

Discussion

Delete()

Deletes partnership view-related records from the database.
EcxPart ner shi p& Del et e(voi d);
A reference to this partnership object.

You must be an administrator and be logged in before calling this method.
After this method executes, the object is reset; fields of the object are reset to 0
or NULL. A list contains no records. The partnership record is deleted from the
database. Dangling standards information, group, and document information
records, which are those records that no longer reference other records in the
database, are also deleted.

You should call the object’s Get (), Li st (), or Next () method before calling
the Del et e() method to ensure that the intended records are deleted.

“Deleting Partnerships” on page 174.

The Get () method on page 186. The Li st () method on page 190. The
Next () method on page 192.

DeleteWaitPeriod()

Determines or specifies the number of days to retain documents before deleting
them.

unsi gned int Del eteWitPeriod() const;
voi d Del eteWaitPeriod (const unsigned int& flag);

The Del et eWai t Peri od() method has the following parameters:

days An unsigned integer that specifies the number of days.
The first form of the method returns an unsigned integer that contains the
number of days to retain documents before deleting them.

Use the first form of the method to determine the number of days to retain
documents before deleting them. Use the second form to specify the number of
days. The Del et eVi t Peri od() method does not modify the database.

182 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Syntax

Parameters

Returns

Discussion

Syntax

Parameters

Returns

Discussion

02 July 99

EcxPartnership Class Reference

Description()

Determines or specifies the partnership’s description.

const char* Description() const;
voi d Description (const char* description);

The Descri pti on() method has the following parameters:

desc A pointer to a character string that contains the description.
The first form of the method returns a pointer to a character string that contains
the description.

Use the first form of the method to determine the description. Use the second
form to specify the description. The Descri pti on() method does not modify
the database.

DocLastControlNumber()

Determines or specifies the last document control number generated.

const char* DoclLast Control Nunber () const;
voi d DocLast Control Nunber (const char* control Nunber);

The DoclLast Cont r ol Nurber () method has the following parameters:

cont r ol Nunber A pointer to a character string that contains the control num-
ber.

The first form of the method returns a pointer to a character string that contains
the control number.

Use the first form of the method to determine the control number. Use the
second form to specify the control number. The DocLast Cont r ol Nurber ()
method does not modify the database.

Chapter 12, Partnership-Related Classes 183

EcxPartnership Class Reference

Syntax

Returns

Example

Syntax

Parameters

Returns

Discussion

DocLock()

Determines or specifies whether or not the document has been read at the
document level.

unsi gned int DocLock() const;
voi d DocLock(const unsigned int&);

The first form of the method returns an unsigned integer that specifies whether
or not the submission has been read at the document level.

See “Using the EcxPartnership Class” on page 169.

DocPriority()

Determines or specifies the document processing priority.

unsigned int DocPriority() const;
void DocPriority (const unsigned int& priority);

The DocPri ority() method has the following parameters:

priority An unsigned integer that specifies the priority.

The first form of the method returns an unsigned integer that contains the
priority.

Use the first form of the method to determine the priority. Use the second form
to specify the priority. The DocPri ori t y() method does not modify the
database.

You can use any of the following values:

Constant Value
PRI ORI TY_UNKNOWN 0

PRI ORI TY_HI GH 1
PRI ORI TY_MEDI UM 2
PRI ORI TY_LOW 3

184 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

See also

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

Discussion

EcxPartnership Class Reference

“Class Variables” on page 175.

DocType()

Determines or specifies the kind of EDI document.

const char* DocType() const;
voi d DocType (const char* type);

The DocType() method has the following parameters:

type A pointer to a character string that contains the document type.
The first form of the method returns a pointer to a character string that contains
the document type.

Use the first form of the method to determine the type. Use the second form to
specify the type. The DocType() method does not modify the database.

“Adding Partnerships” on page 170. “Listing Partnerships” on page 171.

ElementSeparator()

Determines or specifies the data element terminator character.

const char* El ement Separator() const;
voi d El enent Separator (const char* separator);

The El erent Separ at or () method has the following parameters:

separ at or A pointer to a character string that contains the terminator
character.

The first form of the method returns a pointer to a character string that contains
the terminator character.

Use the first form of the method to determine the terminator character. Use the
second form to specify the terminator character. The El ement Separ at or ()
method does not modify the database.

Chapter 12, Partnership-Related Classes 185

EcxPartnership Class Reference

Syntax

Returns

Discussion

Example

Syntax

Parameters

Returns

Discussion

GenOptEnv ()

Determines or specifies the enveloping options.

unsi gned int GenOpt Env() const;
voi d GenOpt Env(const unsigned int&);

The first form of the method returns an unsigned integer that specifies the
enveloping options.

You can use any of the following values:

Constant Value
No UNA, No UNG 0
UNA only 1
UNG only 2
UNA and UNG 3

See “Using the EcxPartnership Class” on page 169.

Get()

Retrieves partnership view-related records from the database.

EcxPart ner shi p& Get (EcxPartnerld& prntnrid);

The Get () method has the following parameters:

prntnrid A reference to an EcxPar t ner | d that specifies the partner-
ship.

A reference to this partnership object.

Administrators may retrieve records for any view. Non-administrators can only
retrieve records for views in which either the sender or receiver member name
matches the user’s login name. You call the partnership ID object’s

Set Val ues() method to specify the view whose records you wish to retrieve.

186 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

See also

Syntax

Returns

Example

Syntax

Parameters

Returns

EcxPartnership Class Reference

If you wish use the Get () method to retrieve a specific partnership, you must
first construct an instance of EcxPar t ner 1 d() with the proper keys, such as
partner ID, standard ID, etc. An easier way to retrieve a partnership would be
to use the Li st () method. You may use the Li st () method to list the
partnership by sender name and receiver name. If the user is logged in as an
administrator, the user can list any partnership by setting the sender name and
receiver name. If the user is not logged in as an administrator, the user can only
list the partnership that the user belongs to, meaning the partnership with the
logged in user either as the sender or receiver.

The EcxPart ner | d: : Set Val ues() method on page 211. The Li st ()
method on page page 190.

GroupGenerateDocAck()

Specifies whether to generate an acknowledgement for the submission at the
group level.

unsi gned i nt G oupGenerat eDocAck() const;
voi d GroupCGener at eDocAck(const unsigned int&);

The first form of the method returns an unsigned integer that indicates whether
or not to generate an acknowledgement for the submission at the group level.

See “Using the EcxPartnership Class” on page 169.

GroupLastControlNumber()

Determines or specifies the last group control number generated.

const char* G oupLast Control Nurmber () const;
voi d GrouplLast Control Nunber (const char* control Nunber);

The Gr oupLast Cont r ol Nunber () method has the following parameters:

cont r ol Nunber A pointer to a character string that contains the control num-
ber.

The first form of the method returns a pointer to a character string that contains
the control number.

Chapter 12, Partnership-Related Classes 187

EcxPartnership Class Reference

Discussion

Syntax

Returns

Example

Syntax

Parameters

Returns

Discussion

Example

Use the first form of the method to determine the control number. Use the
second form to specify the control number. The G oupLast Cont r ol -
Number () method does not modify the database.

GroupLock()

Determines or specifies whether the document has been read at the group
level.

unsi gned i nt G ouplLock() const;
voi d GroupLock (const unsigned inté&)

The first form of the method returns an unsigned integer that indicates whether
or not the document has been read at the group level.

See “Using the EcxPartnership Class” on page 169.

GroupType()
Determines or specifies the kind of EDI documents in the group.

const char* G oupType() const;
voi d G oupType (const char* type);

The Gr oupType() method has the following parameters:

type A pointer to a character string that contains the group type.
The first form of the method returns a pointer to a character string that contains
the group type.

Use the first form of the method to determine the type. Use the second form to
specify the type. The Gr oupType() method does not modify the database.

“Adding Partnerships” on page 170. “Listing Partnerships” on page 171.

IntchngAckWaitPeriod()

Determines or specifies the number of minutes to wait before the acknowl-
edgment becomes overdue.

188 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Syntax

Parameters

Returns

Discussion

Syntax

Parameters

Returns

Discussion

Syntax

02 July 99

EcxPartnership Class Reference

unsi gned int I ntchngAckWitPeriod() const;
voi d | ntchngAckWai t Period (const unsigned int& period);

The | nt chngAckWai t Peri od() method has the following parameters:

peri od An unsigned integer that specifies the number of minutes to
wait.

The first form of the method returns an unsigned integer that contains the
number of minutes to wait before an acknowledgment becomes overdue.

Use the first form of the method to determine the number of minutes to wait
before an acknowledgment becomes overdue. Use the second form to specify
the number of minutes. The | nt chngAckWai t Peri od() method does not
modify the database.

IntchngLastControlNumber()

Determines or specifies the last interchange control number generated.

const char* I ntchnglLast Control Nunber () const;
voi d | ntchngLast Control Number (const char* control Nunber);

The | nt chngLast Cont r ol Nunber () method has the following parameters:

cont r ol Nunber A pointer to a character string that contains the control hum-
ber.

The first form of the method returns a pointer to a character string that contains

the control number.

Use the first form of the method to determine the control number. Use the
second form to specify the control number. The | nt chngLast Contr ol -
Nunmber () method does not modify the database.

IntchngGenerateAck()

Specifies whether to generate an acknowledgement at the interchange level.

unsi gned int IntchngGenerateAck() const;
voi d I ntchngGenerat eAck (const unsigned int&)

Chapter 12, Partnership-Related Classes 189

EcxPartnership Class Reference

Returns An unsigned integer that specifies whether to generate an acknowledgement at
the interchange level.

Example See “Using the EcxPartnership Class” on page 169.

IntchngLock()

Determines or specifies whether the document has ben read at the interchange
level.

Syntax unsigned int |ntchngLock() const;
voi d I ntchngLock (const unsigned int&)

Returns An unsigned integer that specifies whether the document has been read at the
interchange level.

Example See “Using the EcxPartnership Class” on page 169.

List()
Retrieves a list of partnership view-related records from the database.
Syntax EcxPartnershi p& List(const char* partner = NULL);
Parameters The Li st () method has the following parameters:
part ner A pointer to a character string that contains the name of the
receiving member or NULL if not specified.
Returns A reference to this partnership object.

Discussion Administrators may retrieve records for any view. Non-administrators can only
retrieve records for views in which either the sender or receiver member name
matches the user’s login name. The views retrieved for non-administrators
depend on whether the sender or receiver member names are specified in the
partnership object:

= If neither the sender or receiver is specified, the Li st () method retrieves
all view-related records for views in which the user is either the sender or
receiver.

190 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Warning

Example

See Also

Syntax

EcxPartnership Class Reference

= If only the sender is specified, the Li st () method retrieves all view-
related records for views in which the user is the sender.

= If only the receiver is specified, the Li st () method retrieves all view-
related records for views in which the user is the receiver.

= If both the sender and receiver are specified, the Li st () method retrieves
all view-related records for views that match both the sender and receiver;
in which case, the user must be either the receiver or sender.

You can restrict the views, and thus the records that are retrieved, by specifying
a partnership in the par t ner parameter. In this case, the Li st () method uses
only views that match both the specified partner and user as either the sender
or receiver.

If you wish use the Get () method to retrieve a specific partnership, you must
first construct an instance of EcxPar t ner 1 d() with the proper keys, such as
partner ID, standard ID, etc. An easier way to retrieve a partnership would be
to use the Li st () method. You may use the Li st () method to list the
partnership by sender name and receiver name. If the user is logged in as an
administrator, the user can list any partnership by setting the sender name and
receiver name. If the user is not logged in as an administrator, the user can only
list the partnership that the user belongs to, meaning the partnership with the
logged in user either as the sender or receiver.

If only the sender or receiver is specified for a non-administrator, the Li st ()
method mutates the sender or receiver name to match the user name if the
respective name (sender or receiver) does not match the user name.

After calling the Li st () method, the partnership object’s fields contain values
from the records related to the first partnership view in the list.

“Listing Partnerships” on page 171.

The Get () method on page page 186.

MapName()

Determines or specifies the map file name.

const char* MapNane() const;
voi d MapNanme (const char* map);

Chapter 12, Partnership-Related Classes 191

EcxPartnership Class Reference

Parameters

Returns

Discussion

Syntax

Returns

Discussion

Example

See also

Syntax
Returns

Discussion

Warning

The MapName() method has the following parameters:

map A pointer to a character string that contains the map name.
The first form of the method returns a pointer to a character string that contains
the map name.

Use the first form of the method to determine the map name. Use the second
form to specify the map name. The MapNane() method does not modify the
database.

More()

Determines whether more records are left in the list.
| ong More(void);

A long integer that contains the number of records not yet accessed from the
list.

After calling the Li st () method and before calling the Next () method, the
Mor e() method returns the total number of records in the list. All records have
been accessed when the Mor e() method returns 0.

“Listing Partnerships” on page 171.
The Li st () method on page 190. The Next () method on page 192.

Next()

Associates the object with the next record in the list.
EcxPar t ner shi p& Next (voi d);
A reference to this partnership object.

The Next () method sets the fields in the object to match those in the next
record in the list. The Next () method decrements the number of records not
yet accessed, which is returned by the Mor e() method.

Do not call the Next () method if the Mor e() method returns a value less
than 1; the results are unpredictable.

192 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Example

See also

Syntax

Returns

Discussion

Syntax

Returns

Discussion

Syntax

EcxPartnership Class Reference

“Listing Partnerships” on page 171.
The Mor e() method on page 191.

OutRelease()

Determines or specifies the interchange release the user wishes to appear in
bundled EDI documents.

const char* CQutVersion() const;
voi d Qut Version (const char*);

The first form of the method returns a pointer to a character string that contains
the interchange release the user wishes to appear in bundled EDI documents.

Use the first form of the method to determine interchange release the user
wishes to appear in bundled EDI documents. Use the second form to specify
the interchange release the user wishes to appear in bundled EDI documents.

OutStandard()

Determines or specifies the interchange standard the user wishes to appear in
bundled EDI documents.

const char* CQutVersion() const;
voi d Qut Version (const char*);

The first form of the method returns a pointer to a character string that contains
the interchange standard the user wishes to appear in bundled EDI documents.

Use the first form of the method to determine interchange standard the user
wishes to appear in bundled EDI documents. Use the second form to specify
the interchange standard the user wishes to appear in bundled EDI documents.

OutVersion()

Determines or specifies the interchange version the user wishes to appear in
bundled EDI documents.

const char* CQutVersion() const;

Chapter 12, Partnership-Related Classes 193

EcxPartnership Class Reference

Returns

Discussion

Syntax

Parameters

Returns

Discussion

See also

Syntax

Parameters

voi d Qut Version (const char*);

The first form of the method returns a pointer to a character string that contains
the interchange version the user wishes to appear in bundled EDI documents.

Use the first form of the method to determine interchange version the user
wishes to appear in bundled EDI documents. Use the second form to specify
the interchange version the user wishes to appear in bundled EDI documents.

Partnerld()

Determines or specifies the partnership ID.

EcxPartnerl d& Partnerld();
void Partnerld (const EcxPartnerld& id);

The Par t ner 1 D() method has the following parameters:

id A reference to an EcxPar t ner | d that specifies the partner-
ship.

The first form of the method returns a reference to an EcxPar t ner | d object

that contains the ID.

Use the first form of the method to determine the partnership ID. Use the
second form to specify the partnership ID. The Part ner | D() method does
not modify the database.

The EcxPar t ner | d class on page 209.

PreEnveloped()

Determines or specifies whether documents are preenveloped.

unsi gned int PreEnvel oped() const;
voi d PreEnvel oped (const unsigned int& type);

The Pr eEnvel oped() method has the following parameters:

type An unsigned integer that specifies the envelope type.

194 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Returns

Discussion

See also

Syntax

Parameters

Returns

Discussion

02 July 99

EcxPartnership Class Reference

The first form of the method returns an unsigned integer that contains the
envelope type.

Use the first form of the method to determine the envelope type. Use the
second form to specify the envelope type. The Pr eEnvel oped() method
does not modify the database.

You can use any of the following values:

Constant Value
ENVEL OPE_ UNKNOWN 0

ENVELOPE_REGULAR 1
ENVELOPE_NONE 2
ENVELCOPE_EDI 3

“Class Variables” on page 175.

PrimaryXportParam()

Determines or specifies the primary transport protocol parameter.

const char* PrimaryXportParan{) const;
voi d PrimaryXportParam (const char* param);

The Pri mar yXport Par am() method has the following parameters:

par am A pointer to a character string that contains the protocol
parameter.

The first form of the method returns a pointer to a character string that contains
the protocol parameter.

Use the first form of the method to determine the protocol parameter. Use the
second form to specify the protocol parameter. The Pri mar yXport Par am()
method does not modify the database.

Chapter 12, Partnership-Related Classes 195

EcxPartnership Class Reference

Syntax

Parameters

Returns

Discussion

Syntax

Returns

Discussion

Syntax

Returns

PrimaryXportType()
Determines or specifies the primary transport protocol.

const char* PrimaryXportType() const;
voi d PrimaryXport Type (const char* protocol);

The Pri mar yXport Type() method has the following parameters:

pr ot ocol A pointer to a character string that contains the protocol.

The first form of the method returns a pointer to a character string that contains
the protocol.

Use the first form of the method to determine the protocol. Use the second
form to specify the protocol. The Pri mar yXport Type() method does not
modify the database.

RcvrAppCode()

Determines or specifies the application receiver code.

const char* RcvrAppCode() const;
voi d Rcvr AppCode (const char*);

The first form of the method returns a pointer to a character string that contains
the application receiver code.

Use the first form of the method to determine the application receiver code.
Use the second form to specify the application receiver code.

RcvrAppQual()

Determines or specifies the receiving member main trading address.

const char* RcvrAppQual () const;
voi d RcvrAppQual (const char*);

The first form of the method returns a pointer to a character string that contains
the receiving member main trading address.

196 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Discussion

Syntax

Parameters

Returns

Discussion

See also

EcxPartnership Class Reference

Use the first form of the method to determine the receiving member main
trading address. Use the second form to specify the receiving member main
trading address.

ReceiverCertificateType()

Determines or specifies the receiver’s certificate type

unsigned int ReceiverCertificateType() const;
voi d ReceiverCertificateType (const unsigned int& type);

The Recei ver Certi fi cat eType() method has the following parameters:

type An unsigned integer that specifies the certificate type.

The first form of the method returns an unsigned integer that contains the
certificate type.

Use the first form of the method to determine the certificate type. Use the
second form to specify the certificate type. The Recei ver Certifi -
cat eType() method does not modify the database.

You can use any of the following values:

Constant Value
CERTTYPE_UNKNOWN 0

CERTTYPE_SELF 1
CERTTYPE_VERI SIGN1 2
CERTTYPE_VERI SI G2 3

CERTTYPE_VERI SIGN3 4

“Class Variables” on page 175.

ReceiverName()

Determines or specifies the receiver’s member name.

Chapter 12, Partnership-Related Classes 197

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

Syntax

198 Netscape ECXpert Site Administrator’s Handbook

EcxPartnership Class Reference

const char* Recei verNanme() const;
voi d Recei ver Nane (const char* nane);

The Recei ver Name() method has the following parameters:

name A pointer to a character string that contains the member name.

The first form of the method returns a pointer to a character string that contains
the member name.

Use the first form of the method to determine the member name. Use the
second form to specify the member name. The Recei ver Nane() method
does not modify the database.

“Adding Partnerships” on page 170. “Listing Partnerships” on page 171.

ReceiverQual()

Determines or specifies the receiver’s trading address qualifier.

const char* ReceiverQal () const;
voi d ReceiverQal (const char* qualifier);

The Recei ver Qual () method has the following parameters:

qualifier A pointer to a character string that contains the qualifier.

The first form of the method returns a pointer to a character string that contains
the qualifier.

Use the first form of the method to determine the qualifier. Use the second
form to specify the qualifier. The Recei ver Qual () method does not modify
the database.

“Adding Partnerships” on page 170.

ReceiverQualld()

Determines or specifies the receiver’s trading address

const char* ReceiverQual ld() const;

02 July 99

02 July 99

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

Discussion

Syntax

EcxPartnership Class Reference

voi d ReceiverQalld (const char* id);

The Recei ver Qual | d() method has the following parameters:

id A pointer to a character string that contains the trading
address.

The first form of the method returns a pointer to a character string that contains

the trading address.

Use the first form of the method to determine the trading address. Use the
second form to specify the trading address. The Recei ver Qual | d() method
does not modify the database.

“Adding Partnerships” on page 170.

ReleaseCharacter()

Determines or specifies the release character.

const char* Rel easeCharacter() const;
voi d Rel easeCharacter (const char* rel Char);

The Rel easeChar act er () method has the following parameters:

r el Char A pointer to a character string that contains the release charac-
ter.

The first form of the method returns a pointer to a character string that contains

the release character.

Use the first form of the method to determine the release character. Use the
second form to specify the release character. The Rel easeChar act er ()
method does not modify the database.

SecondaryXportParam()

Determines or specifies the secondary transport protocol parameter.

const char* SecondaryXportParam() const;
voi d Secondar yXportParam (const char* param);

Chapter 12, Partnership-Related Classes 199

EcxPartnership Class Reference

Parameters

Returns

Discussion

Syntax

Parameters

Returns

Discussion

Syntax

Parameters

The Secondar yXport Par am() method has the following parameters:

par am A pointer to a character string that contains the protocol
parameter.

The first form of the method returns a pointer to a character string that contains
the protocol parameter.

Use the first form of the method to determine the protocol parameter. Use the
second form to specify the protocol parameter. The Secondar y Xport -
Par am() method does not modify the database.

SecondaryXportType()

Determines or specifies the secondary transport protocol.

const char* SecondaryXportParam() const;
voi d SecondaryXport Type (const char* protocol);

The Secondar yXport Type() method has the following parameters:

pr ot ocol A pointer to a character string that contains the protocol.

The first form of the method returns a pointer to a character string that contains
the protocol.

Use the first form of the method to determine the protocol. Use the second
form to specify the protocol. The Secondar yXport Type() method does not
modify the database.

Security()

Determines or specifies the kind of security.

unsigned int Security() const;
voi d Security (const unsigned inté& security);

The Securi ty() method has the following parameters:

security An unsigned integer that specifies the security.

200 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Returns

Discussion

See also

Syntax

Parameters

Returns

Discussion

02 July 99

EcxPartnership Class Reference

The first form of the method returns an unsigned integer that contains the
certificate type.

Use the first form of the method to determine the security. Use the second form
to specify the security. The Securi ty() method does not modify the
database.

You can use any of the following values:

Constant Value
SECURI TY_PLAI N 0
CERTTYPE_SELF 1
SECURI TY_ENCRYPTED 2

SECURI TY_SI GNEDANDENCRYPTED 3

“Class Variables” on page 175.

SegmentTerminator()

Determines or specifies the segment terminator character.

const char* Segnment Termi nator () const;
voi d Segnent Termi nator (const char* terminator);

The Segment Ter ni nat or () method has the following parameters:

t erm nat or A pointer to a character string that contains the terminator
character.

The first form of the method returns a pointer to a character string that contains
the terminator character.

Use the first form of the method to determine the terminator character. Use the
second form to specify the terminator character. The Segnent Ter i nat or ()
method does not modify the database.

Chapter 12, Partnership-Related Classes 201

EcxPartnership Class Reference

SndrAppCode()

Determines or specifies the application sender code.

Syntax const char* SndrAppCode() const;
voi d Sndr AppCode (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the application sender code.

Discussion Use the first form of the method to determine the application sender code. Use
the second form to specify the application sender code.

SndrAppQual()

Determines or specifies the sending member main trading address.

Syntax const char* SndrAppQual () const;
voi d Sndr AppQual (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the sending member main trading address.

Discussion Use the first form of the method to determine the sending member main trading
address. Use the second form to specify the sending member main trading
address.

SenderCertificateType()

Determines or specifies the sender’s certificate type.

Syntax unsigned int SenderCertificateType() const;
voi d SenderCertificateType (const unsigned int& type);

Parameters The Sender Certi fi cat eType() method has the following parameters:

type An unsigned integer that specifies the certificate type.

Returns The first form of the method returns an unsigned integer that contains the
certificate type.

202 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxPartnership Class Reference

Discussion Use the first form of the method to determine the certificate type. Use the
second form to specify the certificate type. The Sender Certi fi cat eType()
method does not modify the database.

You can use any of the following values:

Constant Value
CERTTYPE_UNKNOWN 0

CERTTYPE_SELF 1
CERTTYPE_VERI SIGN1 2
CERTTYPE_VERI SI G\2 3

CERTTYPE_VERI SIGN3 4

See also “Class Variables” on page 175.

SenderName()

Determines or specifies the sender's member name.

Syntax const char* Sender Nane() const;
voi d Sender Nane (const char* nane);

Parameters The Sender Nanme() method has the following parameters:
nane A pointer to a character string that contains the member name.
Returns The first form of the method returns a pointer to a character string that contains
the member name.

Discussion Use the first form of the method to determine the member name. Use the
second form to specify the member name. The Sender Name() method does
not modify the database.

Example “Adding Partnerships” on page 170. “Listing Partnerships” on page 171.

02 July 99 Chapter 12, Partnership-Related Classes 203

EcxPartnership Class Reference

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

SenderQual()

Determines or specifies the sender’s trading address qualifier.

const char* SenderQual () const;
voi d Sender Qual (const char* qualifier);

The Sender Qual () method has the following parameters:

qualifier A pointer to a character string that contains the qualifier.

The first form of the method returns a pointer to a character string that contains
the qualifier.

Use the first form of the method to determine the qualifier. Use the second
form to specify the qualifier. The Sender Qual () method does not modify the
database.

“Adding Partnerships” on page 170.

SenderQualld()

Determines or specifies the sender’s trading address.

const char* SenderQual I d() const;
voi d SenderQual ld (const char* id);

The Sender Qual |1 d() method has the following parameters:

id A pointer to a character string that contains the trading
address.

The first form of the method returns a pointer to a character string that contains
the trading address.

Use the first form of the method to determine the trading address. Use the
second form to specify the trading address. The Sender Qual | d() method
does not modify the database.

“Adding Partnerships” on page 170.

204 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Parameters

Returns

Discussion

See also

Syntax

Parameters

EcxPartnership Class Reference

SendType()

Determines or specifies when the document is to be sent.

unsi gned int SendType() const;
voi d SendType (const unsigned int& type);

The SendType() method has the following parameters:
type An unsigned integer that specifies the send type.

The first form of the method returns an unsigned integer that contains the send
type.

Use the first form of the method to determine the send type. Use the second
form to specify the send type. The SendType() method does not modify the
database.

You can use any of the following values:

Constant Value
SENDTYPE_UNKNOWN 0

SENDTYPE_I MVEDI ATE 1
SENDTYPE_ONETI ME 2

SENDTYPE_PERI ODI C 3

“Class Variables” on page 175.

SetLogin()

Allows the object to access the database.
EcxPar t ner shi p& Set Logi n(EcxLogi n& | ogi n);
The Set Logi n() method has the following parameters:

| ogin A reference to a valid EcxLogi n object

Chapter 12, Partnership-Related Classes 205

Returns

Discussion

Example

See also

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

206 Netscape ECXpert Site Administrator’s Handbook

EcxPartnership Class Reference

A reference to this partnership object.

If you do not use the form of the constructor that accepts a login object, you
must call the Set Logi n() method before accessing this object.

See “Creating Partnership Objects” on page 170.

The EcxPar t ner shi p constructor on page 177. The EcxLogi n class on
page 127.

StandardName()

Determines or specifies the name of the EDI standard.

const char* StandardNane() const;
voi d StandardNane (const char* nane);

The St andar dNanme() method has the following parameters:

name A pointer to a character string that contains the standard name.

The first form of the method returns a pointer to a character string that contains
the standard name.

Use the first form of the method to determine the standard name. Use the
second form to specify the standard name. The St andar dName() method
does not modify the database.

See “Adding Partnerships” on page 170. See “Listing Partnerships” on page 171.

StandardRelease()

Determines or specifies the standard’s release number.

const char* StandardRel ease() const;
voi d StandardRel ease (const char* rel ease);

The St andar dRel ease() method has the following parameters:

rel ease A pointer to a character string that contains the release num-

ber.

02 July 99

02 July 99

Returns

Discussion

Example

Syntax

Parameters

Returns

Discussion

Example

Syntax

Parameters

EcxPartnership Class Reference

The first form of the method returns a pointer to a character string that contains
the release number.

Use the first form of the method to determine the release number. Use the
second form to specify the release number. The St andar dRel ease()
method does not modify the database.

See “Adding Partnerships” on page 170.

StandardVersion()

Determines or specifies the standard’s version number.

const char* StandardVersion() const;
voi d StandardVersion (const char* version);

The St andar dVer si on() method has the following parameters:

ver si on A pointer to a character string that contains the version hum-
ber.

The first form of the method returns a pointer to a character string that contains

the version number.

Use the first form of the method to determine the version number. Use the
second form to specify the version number. The St andar dRel ease()
method does not modify the database.

See “Adding Partnerships” on page 170. See “Listing Partnerships” on page 171.

SubElementSeparator()

Determines or specifies the data subelement terminator character.

const char* SubEl enent Separator() const;
voi d SubEl enent Separator (const char* separator);

The SubEl enent Separ at or () method has the following parameters:

separ at or A pointer to a character string that contains the terminator
character.

Chapter 12, Partnership-Related Classes 207

EcxPartnership Class Reference

Returns The first form of the method returns a pointer to a character string that contains
the terminator character.

Discussion Use the first form of the method to determine the terminator character. Use the
second form to specify the terminator character. The SubEl enent Sepa-
rat or () method does not modify the database.

TestProductionFlag()

Determines or specifies whether the partnership is used for testing or
production.

Syntax unsigned int TestProductionFlag() const;
voi d Test ProductionFlag (const unsigned int& flag);

Parameters The Test Producti onFl ag() method has the following parameters:

flag An unsigned integer that specifies the flag value.

Returns The first form of the method returns an unsigned integer that contains the flag
value.

Discussion Use the first form of the method to determine the flag value. Use the second
form to specify the flag value. The Test Pr oduct i onFl ag() method does
not modify the database.

You can set or receive any of the following values:

Description Value
Unknown 0
Production 1
Test 2

See also “Class Variables” on page 175.

MapDirection()

Determines or specifies the document translation type.

208 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Syntax

Parameters

Returns

Discussion

See also

About the EcxPartnerID Class

unsi gned int MapDirection() const;
voi d MapDirection (const unsigned int& type);

The MapDi r ecti on() method has the following parameters:

type An unsigned integer that specifies the translation type.

The first form of the method returns an unsigned integer that contains the trans-
lation type.

Use the first form of the method to determine the translation type. Use the
second form to specify the translation type. The MapDi r ect i on() method
does not modify the database.

You can use any of the following values:

Constant Value
XLATTYPE_UNKNOWN 0

XLATTYPE_| NBOUND 1

XLATTYPE_OUTBOUND 2

XLATTYPE_EDI 2EDI 3
XLATTYPE_APP2APP 4
XLATTYPE_NONE 5

“Class Variables” on page 175.

About the EcxPartnerlID Class

02 July 99

The EcxPar t ner | D class represents a key from which partnership views can
be retrieved from the database. You must create an EcxPar t ner | D object
before you can call the partnership’s Get () and Part ner | D() methods. A
partner ID key consists of the following values:

= partnership ID

Chapter 12, Partnership-Related Classes 209

EcxPartnerID Class Reference

Methods

= standard ID
= document type

In general, values for a partnership ID and a standard ID are the same for each
record in the view.

Summary list;

Constructor and destructor

EcxPartner| D() Creates an EcxPar t ner | D object.
~EcxPartner| D() Destroys an EcxPar t ner | D object.
Setting key values

Set Val ues() Sets the values associated with a partnership view
key.

Determining key values

DocType() Determines the document type in the key.

Par t ner shi pl D() Determines the partnership ID in the key.

St andar dl D() Determines the standard ID in the key.

EcxPartnerID Class Reference

Interface
Superclasses
Subclasses
Friend Classes

Syntax

ecxpartnership.h
None
None
None

class DLL_ecxsdk EcxPartnerld { ... };

Constructor and Destructor

EcxPartnerld()

Creates an EcxPart ner I d object.

210 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxPartnerID Class Reference

Syntax EcxPartnerld(void);

~EcxPartnerid()

Destroys an EcxPart ner | d object.

Syntax virtual ~EcxPartnerld(void);

Methods

This section describes the methods of the EcxPar t ner | d class.

DocType()

Determines the document type in the key.
Syntax const char* DocType(void) const;

Returns A pointer to a character string that contains the document type.

Partnershipld()

Determines the partnership ID in the key.
Syntax | ong Partnershipld(void) const;

Returns A long integer that contains the partnership ID.

SetValues()

Sets the values associated with a partnership view key.

Syntax voi d SetVal ues(|ong partnership_id,
| ong standard_id,
const char* doctype);

02 July 99 Chapter 12, Partnership-Related Classes 211

EcxPartnerID Class Reference

Parameters The Set Val ues() method has the following parameters:

partnership_id A long integer that specifies the partnership ID.

standard_id A long integer that specifies the standard ID.

doct ype A pointer to a character string that specifies the document
type.

Example EcxPartnerld ecxpartner;

ecxpartner. Set Val ues(m partnership_id, mpartnership_id, mdoctype);
m _pPar t ner shi p- >Part ner | d(ecxpartner);

Standardld()

Determines the standard ID in the key.
Syntax | ong Standardl d(void) const;

Returns A long integer that contains the standard ID.

212 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Chapter

Document-Related Classes

his chapter describes the EcxDocunent class, which represents

documents sent to the logged-in user via ECXpert. This chapter also
describes the EcxDocl d class, which represents key values for Ecx Docunent
objects. This chapter contains the following sections:

= About the EcxDocument Class
= Using the EcxDocument Class
= EcxDocument Class Reference
= About the EcxDoclID Class

e EcxDoclD Class Reference

Chapter 13, Document-Related Classes 213

About the EcxDocument Class

About the EcxDocument Class

The EcxDocunent class represents documents sent to the logged-in user via
ECXpert. You can retrieve these document records and access information that
identifies them, such as the filename that contains the document’s content.

Methods Summary list:

Constructor and destructor

EcxDocunent () Creates an EcxDocurnent object.
~EcxDocurrent () Destroys an EcxDocurnent object.
Allowing database access

Set Logi n() Allows the object to access the database.

Retrieving and listing document records

Get () Retrieves a document record from the database.

List() Retrieves a list of document records from the data-
base.

Mor e() Determines whether more records are left in the list.

Next () Associates the object with the next record in the list.

Del ete Deletes document records from the database.

Resetting an object’s state

Cl ear () Clears the state associated with an object, including its
list.

Accessing key fields
Docl d() Determines the document ID.

Accessing document information

Fi | eName() Determines the name of the file associated with the
document.

SecondaryTi tle() Determines the secondary title.

Secondar yVal ue() Determines the secondary value.

Sender Nare() Determines or specifies the sender’'s member name.

State() Determines the document’s state.

Title() Determines the document'’s title.

Val ue() Determines the document’s value.

Xpor t Par am() Determines the transport parameter.

Xpor t Type() Determines the transport protocol.

214 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the EcxDocument Class

Fi | ename() Determines the name of the file associated with the
document.

CreationDat e() Determines the date the document was created.

Modi f yDat e() Determines the most recent document modification
date.

DocType() Determines the document type.

St andar d() Determines the document’s EDI standard.

Ver si on() Determines the document’s EDI version.

Rel ease() Determines the document’s EDI standard release
number.

Car dCount () Determines the number of cards associated with the
document.

Dat aSt at e() Determines the state the document data is in.

Read() Determines whether the document has been read.

Accessing card-level information

Car dl OType() Determines the card input/output type.

Car dFl ags() Accesses information about what card flags have been
set.

TrackSt at e() Determines the document’s tracking state.

Transl at edFi | eName() Accesses the name of the translated file.

Set ReadyFor Pur ge() Sets the document to “ready to be purged” state.

Using the EcxDocument Class

The following example shows how to create an EcxDocunent object and use
it to list the tracking records for incoming documents in the database. Records
received by the “ECXSDK” transport type are listed first, followed by those from
the specified sender by the “ECXSDK” transport type.

#i ncl ude <stdio. h>
#i ncl ude <fstream h>

#i ncl ude "ecxsdk. h"

int main(int argc, char * argv[]) {
int retval = -1,

Ecxlnit ecxinit;

02 July 99 Chapter 13, Document-Related Classes 215

Using the EcxDocument Class

EcxLogi n * pLogi n;
EcxDocunment * pDocunent;
EcxDocld id;

if(argc !'= 3) {
usage(argv);
return(retval);

}

i f((pLogin = new EcxLogin())->Errnum()) {
cout << "EcxLogin Object Error:" << endl;

cout << "\tErrnum " << pLogin->Errnum() <<

cout << "\tErrmsg:

cout << endl;

return(pLogi n->Errnum());
}

endl ;
<< pLogi n->Errmsg() << endl;

i f((pLogin->Login(argv[1], argv[2])).Errnum()) {

cout << "EcxLogin.Login() Failed:" << endl;
cout << "\tErrnum " << pLogin->Errnun() << endl;

cout << "\tErrnsg:

cout << endl;

return(pLogi n->Errnum());
}

cout << "Successful login for user: " << argv[1l] << endl;

<< pLogi n->Errnsg() << endl;

i f ((pDocunment = new EcxDocunent ())->Errnum()) {

cout << "EcxDocunent Cbject Error:" << endl;
cout << "\tErrnum " << pDocunent->Errnum() << endl;
cout << "\tErrmsg: " << pDocunent->Errnmsg() << endl;

cout << endl;
return(pDocunent - >Errnum());

}

i f ((pDocunent ->Set Logi n(*pLogin)).Errnum()) {

cout << "EcxDocunent. SetlLogin() Failed:" << endl;

cout << "\tErrnum " << pDocunent->Errnum() << endl;

cout << "\tErrnsg:
cout << endl;
return(pDocunent - >Errnun());

}

cout << "Created EcxDocunent object!" << endl;

pDocunent - >Xpor t Type(" ECXSDK") ;

i f((pDocunment->List()).Errnum()) {

cout << "EcxDocunent.List() Failed:" << endl;
cout << "\tErrnum " << pDocunent->Errnum() << endl;

216 Netscape ECXpert Site Administrator’s Handbook

<< pDocunent->Errnsg() << endl;

02 July 99

cout

<<

"\tErrmnsg:

return(pDocunent - >Errnun());

}

cout <<

whi | e(pDocunent - >More()) {

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
id=

}

Using the EcxDocument Class

<< pDocumrent - >Errnsg() << endl;

"*xx " << pDocument->More() << " records found. ***" << endl;

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

---" << endl;
" Sender Namne:
"State:
"Title:
"Val ue:
"SecondaryTitle:
" Secondar yVal ue:
"Fil eNane(1):
"Fil eName(2):
"Fil eName(3):
endl ;

pDocunent - >Docl d() ;
pDocunent - >Next () ;

pDocunent - >Cl ear () ;
pDocunent - >Sender Nanme(argv[1]);
pDocunent - >Xpor t Type(" ECXSDK") ;

<<
<<
<<
<<
<<
<<
<<
<<
<<

pDocunent - >Sender Nanme() << endl;
pDocunent - >State() << endl;
pDocunent ->Title() << endl;
pDocunent - >Val ue() << endl;
pDocunent - >SecondaryTitl e() << endl;
pDocunent - >Secondar yVal ue() << endl;
pDocunent - >Fi | eName(1) << endl;
pDocunent - >Fi | eNane(2) << endl;
pDocunent - >Fi | eNane(3) << endl;

i f((pDocunent->List()).Errnum()) {
<< "EcxDocunent.List(" << argv[1l] << ") Failed:" << endl;
"\tErrnum " << pDocument->Errnum() << endl;

cout
cout

cout << "\tErrnsg:

<<

return(pDocunent - >Errnun());

}

<< pDocunent - >Errnsg() << endl;

cout << "*** " << pDocunent->Mre() << " records found. ***" << endl;

whi | e(pDocunent - >More()) {

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
id =

02 July 99

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

"---" << endl;

" Sender Nane:
"State:

"Title:

"Val ue:
"SecondaryTitle:
" Secondar yVal ue:
"Fil eName(1):
"Fil eNane(2):
"Fi |l eName(3):
endl ;

pDocunent - >Docl d() ;
pDocunent - >Next () ;

<<
<<
<<
<<
<<
<<
<<
<<
<<

pDocunent - >Sender Nane() << endl;
pDocunent - >State() << endl;
pDocunent ->Title() << endl;
pDocunent - >Val ue() << endl;
pDocunent - >SecondaryTitl e() << endl;
pDocunent - >Secondar yVal ue() << endl;
pDocunent - >Fi | eNane(1) << endl;
pDocunent - >Fi | eNane(2) << endl;
pDocunent - >Fi | eNane(3) << endl;

Chapter 13, Document-Related Classes 217

EcxDocument Class Reference

cout << "*** EcxDocument test conplete ***" << endl;
retval = 0;

return(retval);

}

EcxDocument Class Reference

Interface ecxdocunent. h
Superclasses EcxBase
Subclasses None
Friend Classes None

Syntax class EcxDocunment : public EcxBase { ... };

Constants and Data Types

The following definitions, which are defined at file scope, allow you to specify
the kind of list you want to create:

Syntax #define ECXDOCUMENT_GET_READ 1
#def i ne ECXDOCUMENT_GET_UNREAD 2

ECXDOCUMENT _GET_READ Include documents that have been accessed.

ECXDOCUMENT _GET_UNREAD Include documents that have not been accessed.

Constructor and Destructor

EcxDocument()

Creates an EcxDocunent object.

218 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxDocument Class Reference

Syntax EcxDocumnent (voi d);
EcxDocunent (EcxLogi n& | ogi n);

Parameters The constructor has the following parameters:
| ogin The login object to associate with this member object.
Discussion The first form of the constructor allows you to create a stack-based object. The

second form of the constructor requires that you create an EcxLogi n object
before you create this object.

Example See “Using the EcxDocument Class” on page 215.

See also The Set Logi n() method on page 227. The EcxLogi n class on page 127.

~EcxDocument()

Destroys an EcxDocunent object.
Syntax virtual ~EcxDocunent (void);

Discussion The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Cl ear () method. The destructor
does not destroy the associated EcxLogi n object.

Seealso The C ear () method on page 220.

Methods

This section describes the methods of the EcxDocunent class.

CardCount()

Determines the number of cards associated with the document.
Syntax const int* CardCount(void) const;
Returns An integer that contains the number of cards associated with the document.

Example See “Using the EcxDocument Class” on page 215.

02 July 99 Chapter 13, Document-Related Classes 219

EcxDocument Class Reference

CardFlags()

Accesses information about what card flags have been set.
Syntax short CardFl ags(int cardnum
Parameters The Car dFl ags() method has the following parameters:

cardnum An integer that contains the card number.

Returns A short integer that indicates what card flags have been set.

Example See “Using the EcxDocument Class” on page 215.

CardlOType()

Determines the card input/output type.
Syntax short Cardl OType(int cardnum
Parameters The Car dl OType() method has the following parameters:

cardnum An integer that contains the card number.

Returns A short integer that indicates the card input/output type.

Example See “Using the EcxDocument Class” on page 215.

Clear()

Clears the state associated with an object, including its list.
Syntax void C ear(void);
Discussion All fields in the object are reset to 0 or NULL. A list contains no records.

Example See “Using the EcxDocument Class” on page 215.

220 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxDocument Class Reference

CreationDate()

Determines the date the document was created.
Syntax const | ong CreationDate(void) const;
Returns A long integer that indicates the date the document was created.

Example See “Using the EcxDocument Class” on page 215.

DataState()

Determines the state the document data is in.
Syntax short DataState(void) const;
Returns A short integer that indicates what state the document data is in.

Discussion You can receive any of the following values:

Description Value
DSunknown 0
DSready for purge 1
DSpurged 2
DSready for archive 3
DSarchived 4
DSready for restore 5
DSrestored 6

Example See “Using the EcxDocument Class” on page 215.

02 July 99 Chapter 13, Document-Related Classes 221

EcxDocument Class Reference

Delete()

Deletes document records from the database.
Syntax EcxDocumnent & Del et e(voi d) ;
Returns A reference to this document object.

Discussion You must be an administrator and be logged in before calling this method.

Docld()

Determines the document ID.
Syntax EcxDocl d& Docl d(voi d);
Returns A reference to an EcxDocl d object that contains the document ID.
Example See “Using the EcxDocument Class” on page 215.

See also The EcxDocl d class on page 231.

DocType()

Determines the document type.
Syntax const char* DocType(void) const;
Returns A pointer to a character string that contains the document type.

Example See “Using the EcxDocument Class” on page 215.

FileName()

Determines the name of the file associated with the document.
Syntax const char* FileNane(int cardnum= 1);
Parameters The Fi | eName() method has the following parameters:

cardnum An integer that contains the card number.

222 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Returns
Example

Discussion

Syntax

Parameters

Returns

Discussion

See also

Syntax

Parameters

EcxDocument Class Reference

A pointer to a character string that contains the full path name of the file.
See “Using the EcxDocument Class” on page 215.

If you do not specify a card number, the file name associated with the first card
is returned. Typically, the first card is an input card.

Get()

Retrieves a document record from the database.
EcxDocunent & Get (EcxDocl d& doci d, const int mark_read = TRUE);

The Get () method has the following parameters:

doci d A reference to the EcxDocl d object that specifies the retrieval
criteria.
mar k_r ead An integer value that specifies whether to mark the document

as having been read.

A reference to this document object.

You call the document ID object’s Set Val ues() method to specify the
document you wish to retrieve. The logged-in user's name must match the
receiver’s name for the retrieved document and the values for the document 1D,
tracking ID, group ID, and interchange ID in the doci d parameter must match
the corresponding values for the retrieved document. You can specify that the
document has not been read by setting the mar k_r ead parameter to FALSE
before calling the Get () method; otherwise, the Get () method marks the
document as having been read.

The EcxDocl d: : Set Val ues() method on page 234.

List()

Retrieves a list of document records from the database..
EcxDocunent & List(const int flags = ECXDOCUMENT_GET_UNREAD) ;
The Li st () method has the following parameters:

flags An integer that specifies which documents to retrieve.

Chapter 13, Document-Related Classes 223

EcxDocument Class Reference

Returns A reference to this document object.

Discussion The logged-in user's name must match the receiver’'s name for the retrieved
document. By default, only unread documents are retrieved. You can further
control the records that are retrieved by specifying a value in the f | ags
parameter or by calling the Sender Nane() method:

= Setthe fl ags parameter to ECXDOCUVENT _GET_READ to specify retrieval
of only documents that have been read.

= Set the flags parameter to both ECXDOCUMENT_GET_READ and
ECXDOCUMENT_GET_UNREAD (ECXDOCUMENT_GET_READ |
ECXDOCUMENT_GET_UNREAD) to specify retrieval of all document
records.

= Call the Sender Narme() method first to restrict the list to include only
documents with the specified sender.

After calling the Li st () method, the document object’s fields contain values
from the record related to the first document in the list.

If you are trying to use this method to retrieve tracking IDs to enable you to
retrieve a particular value, but no value is being returned, simply skip to the
next tracking ID. For example, if you are using this method to get tracking IDs
to retrieve the translated file name from the database, not every tracking ID has
a corresponding translated file, because some tracking IDs are generated by
bundle.

Example See “Using the EcxDocument Class” on page 215.

See also The Sender Nanme() method on page 227. The Xport Type() method on
page 231. “Constants and Data Types” on page 218.

ModifyDate()

Determines the most recent document modification date.
Syntax const | ong MdifyDate(void) const;
Returns A long integer that indicates the most recent document modification date.

Example See “Using the EcxDocument Class” on page 215.

224 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Returns

Discussion

Example

See also

Syntax

Returns

Discussion

Warning

Example

See also

Syntax

EcxDocument Class Reference

More()

Determines whether more records are left in the list.
| ong More(void);

A long integer that contains the number of records not yet accessed from the
list.

After calling the Li st () method and before calling the Next () method, the
Mor e() method returns the total number of records in the list. All records have
been accessed when the Mor e() method returns 0.

See “Using the EcxDocument Class” on page 215.

The Li st () method on page 223. The Next () method on page 225.

Next()

Associates the object with the next record in the list.
EcxDocunent & Next (voi d);
A reference to this document object.

The Next () method sets the fields in the object to match those in the next
record in the list. The Next () method decrements the number of records not
yet accessed, which is returned by the Mor e() method.

Do not call the Next () method if the Mor e() method returns a value less
than 1; the results are unpredictable.

See “Using the EcxDocument Class” on page 215.

The Mor e() method on page 225.

Read()

Determines whether the document has been read.

short Lock(void)const;

Chapter 13, Document-Related Classes 225

EcxDocument Class Reference

Returns

Discussion

Example

Syntax

Returns

Example

Syntax
Returns

Example

Syntax
Returns

Example

226 Netscape ECXpert Site Administrator’s Handbook

A short integer that indicates whether the document has been read.

This method will set a document'’s state to read (pass in 1 or true) or unread
(pass in 0 or false).

See “Using the EcxDocument Class” on page 215.

Release()

Determines the document’s EDI standard release number.
const char* Rel ease(void) const;

A pointer to a character string that contains the document’s EDI standard
release number.

See “Using the EcxDocument Class” on page 215.

SecondaryTitle()

Determines the secondary title.
const char* SecondaryTitle(void) const;
A pointer to a character string that contains the title.

See “Using the EcxDocument Class” on page 215.

SecondaryValue()

Determines the secondary value.
const char* SecondaryVal ue(voi d) const;
A pointer to a character string that contains the value.

See “Using the EcxDocument Class” on page 215.

02 July 99

02 July 99

Syntax

Parameters

Returns

Discussion

Example

See also

Syntax

Parameters

Returns

Discussion

Example

See also

EcxDocument Class Reference

SenderName()

Determines or specifies the sender's member name.

const char* Sender Nane(voi d) const;
voi d Sender Nanme(const char * nane);

The Sender Nare() method has the following parameters:

nane A pointer to a character string that specifies the name.

The first form of the method returns a pointer to a character string that contains
the name.

Use the first form of the method to determine the sender’s member name. Use
the second form to specify the name before calling the Li st () method. The
Sender Nane() method does not modify the database.

See “Using the EcxDocument Class” on page 215.

The Li st () method on page 223.

SetLogin()

Allows the object to access the database.
EcxDocunent & Set Logi n(EcxLogi n& | ogi n);
The Set Logi n() method has the following parameters:

| ogin A reference to a valid EcxLogi n object

A reference to this document object.

If you do not use the form of the constructor that accepts a login object, you
must call the Set Logi n() method before accessing this object.

See “Using the EcxDocument Class” on page 215.

The EcxDocunent constructor on page 218. The EcxLogi n class on
page 127.

Chapter 13, Document-Related Classes 227

EcxDocument Class Reference

Syntax

Parameters

Returns

Example

Syntax
Returns

Example

Syntax
Returns

Discussion

228 Netscape ECXpert Site Administrator’s Handbook

SetReadyForPurge()

Sets document to “ready to be purged” state.
EcxDocunent & Set ReadyFor Pur ge(EcxDocl d& doci d)
The Set ReadyFor Pur ge() method has the following parameters:

doci d A reference to the document’s ID number

A reference to this document object.

See “Using the EcxDocument Class” on page 215.

Standard()

Determines the document’s EDI standard.
const char* Standard(void) const;
A pointer to a character string that contains the document’s EDI standard.

See “Using the EcxDocument Class” on page 215.

State()

Determines the document’s state.
short State(void) const;
A short integer that specifies the document’s state.

You can receive any of the following values:

Description Value
Unknown 0
Ready 1
In progress 2

02 July 99

EcxDocument Class Reference

Done okay 3
Done bad 4
All done okay 5
Bundled 6

Example See “Using the EcxDocument Class” on page 215.

Title()

Determines the document’s title.
Syntax const char* Title(void) const;

Returns A pointer to a character string that contains the title.

TrackState()

Determines the document’s tracking state.
Syntax void TrackState(const short state);
Parameters The TrackSt at e() method has the following parameters:

state A bitmap that specifies the document’s state

Returns A reference to this document object.

Discussion To retrieve a list of docs with a specific state, specify the state before you call
the Li st () method. You can receive any of the following states:

Description Value
Unknown 0

02 July 99 Chapter 13, Document-Related Classes 229

EcxDocument Class Reference

Syntax
Returns

Discussion

Syntax

Returns

Syntax

Returns

Complete 1
In progress 2
Warning 4
Failed 8

TranslatedFileName()

Accesses the name of the translated file.
const char* Transl at edFi | eNane(voi d);
A pointer to a character string that contains the name of the translated file.

If you are trying to use this method to retrieve tracking IDs to enable you to
retrieve a particular value, but no value is being returned, simply skip to the
next tracking ID. For example, if you are using this method to get tracking IDs
to retrieve the translated file name from the database, not every tracking ID has
a corresponding translated file, because some tracking IDs are generated by
bundle.

Value()

Determines the document’s value.
const char* Val ue(void) const;

A pointer to a character string that contains the value.

Version()

Determines the document’s EDI standard version number.
const char* version(void) const;

A pointer to a character string that contains the document’s EDI standard
version number.

230 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Example

Syntax

Returns

Syntax

Parameters

Returns

Discussion

Example

See also

About the EcxDoclD Class

See “Using the EcxDocument Class” on page 215.

XportParam()

Determines the transport parameter.
const char* XportParamvoi d) const;

A pointer to a character string that contains the parameter.

XportType()

Determines the transport protocol.

const char* XportType(void) const;
voi d Xport Type(const char * protocol);

The Xport Type() method has the following parameters:

pr ot ocol A pointer to a character string that specifies the protocol.
The first form of the method returns a pointer to a character string that contains
the protocol.

Use the first form of the method to determine the protocol. Use the second
form to specify the protocol before calling the Li st () method. The
Xpor t Type() method does not modify the database.

See “Using the EcxDocument Class” on page 215.

The Li st () method on page 223.

About the EcxDoclD Class

02 July 99

The EcxDocl D class represents a key from which documents can be retrieved
from the database. You must create an EcxDocl D object before you can call
the partnership’s Get () and Docl D() methods. A document ID key consists
of the following values:

Chapter 13, Document-Related Classes 231

EcxDoclD Class Reference

Methods

= tracking ID

= interchange ID
= group ID

= document ID
Summary list:

Constructor and destructor
EcxDocl ()

~EcxDocl ()

Setting key values

Set Val ues()

Determining key values
Docurnent | D()

Tracki ngl D()

I nt er changel D()

Groupl ()

Creates an EcxDocl D object.
Destroys an EcxDocl D object.

Sets the values associated with a document’s key.

Determines the document ID in the key.
Determines the tracking ID in the key.
Determines the interchange ID in the key.
Determines the group ID in the key.

EcxDoclD Class Reference

Interface
Superclasses
Subclasses
Friend Classes

Syntax

ecxdocunent . h
None
None
None

cl ass EcxDocld {

232 Netscape ECXpert Site Administrator’s Handbook

b

02 July 99

EcxDoclD Class Reference

Constructor and Destructor

EcxDoclID()

Creates an EcxDocl D object.

Syntax EcxDocl D(voi d);

~EcxDoclID()

Destroys an EcxDocl D object.

Syntax virtual ~EcxDocl D(void);

Methods

This section describes the methods of the EcxDocl D class.

Documentid()

Determines the document ID in the key.
Syntax | ong Docunent | d(void);

Returns A long integer that contains the document ID.

Groupld()

Determines the group ID in the key.
Syntax | ong G oupld(void);

Returns A long integer that contains the group ID.

02 July 99 Chapter 13, Document-Related Classes 233

EcxDoclD Class Reference

Syntax

Returns

Syntax

Parameters

Syntax

Returns

Interchangeld()

Determines the interchange ID in the key.
| ong | nterchangel d(void);

A long integer that contains the interchange ID.

SetValues()

Sets the values associated with a document’s key.

voi d Set Val ues(long trackl D,
| ong i nterchangel D,
| ong groupl D,
| ong docunent| D);

The Set Val ues() method has the following parameters:

trackl D A long integer that specifies the tracking ID.

i nt er changel D A long integer that specifies the interchange ID.
groupl D A long integer that specifies the group ID.
docurent I D A long integer that specifies the document ID.

Trackingld()
Determines the tracking ID in the key.
| ong Trackingld(void);

A long integer that contains the tracking ID.

234 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxTracking Class

his chapter describes the EcxTr acki ng class, which represents
documents sent from the logged-in user via ECXpert. This chapter
contains the following sections:

<= About the EcxTracking Class
= Using the EcxTracking Class

= EcxTracking Class Reference

02 July 99 Chapter 14, The EcxTracking Class 235

About the EcxTracking Class

About the EcxTracking Class

The EcxTr acki ng class represents documents sent from the logged-in user
via ECXpert. You can retrieve the tracking status of a document using an

EcxTr acki ng object.

Methods Summary list:

Constructor and destructor
EcxTracki ng()

~EcxTr acki ng()

Allowing database access
Set Logi n()

Listing document records

Li st ()

Mor e()

Next ()

Get ()

Del et e()

Resetting an object’s state
Clear ()

Accessing document information
SecondaryTitle()
Secondar yVal ue()
Recei ver Name()

State()

Title()

Val ue()

Progress()

Fi | eNane()

St andar d()

Ver si on()

236 Netscape ECXpert Site Administrator’s Handbook

Creates an EcxTr acki ng object.

Destroys an EcxTr acki ng object.

Allows the object to access the database.

Retrieves a list of document records from the data-
base.

Determines whether more records are left in the list.
Associates the object with the next record in the list.
Retrieves document ID records from the database.
Deletes a document record.

Clears the state associated with an object, including its
list.

Determines the secondary title.
Determines the secondary value.
Determines receiver’'s member name.
Determines the document’s state.
Determines the document’s title.
Determines the document’s value.
Determines the document’s progress.
Accesses the file name of the document.
Determines the document’s EDI standard.

Determines the document’s EDI standard version
number.

02 July 99

Using the EcxTracking Class

Rel ease() Determines the document’s EDI standard release
number.

Transl at edFi | eName() Accesses the name of the translated file.

Creat i onDat e() Accesses the date the document was created.

Modi f yDat e() Accesses the date the document was last modified.

DocType() Determines the document type.

Dat aSt at e() Determines what state the data is in.

Set ReadyFor Pur ge() Specifies whether the document is ready to be
purged.

Using the EcxTracking Class

The following example shows how to create an EcxTr acki ng object and use

it to list the tracking-related records in the database:

#i ncl ude <stdio. h>
#i ncl ude <fstream h>

#i ncl ude "ecxsdk. h"
int main(int argc, char * argv[]) {
int retval = -1;

Ecxlnit ecxinit;
EcxLogi n * pLogi n;
EcxTracki ng * pTracking;

i f((pLogin = new EcxLogin())->Errnum()) {
cout << "EcxLogin Object Error:" << endl;

cout << "\tErrnum " << pLogin->Errnun() << endl;
cout << "\tErrmsg: " << plLogin->Errmsg() << endl;

cout << endl;
return(pLogi n->Errnum());

}

i f((pLogi n->Login(argv[1], argv[2])).Errnum()) {

cout << "EcxLogin.Login() Failed:" << endl;

cout << "\tErrnum " << pLogin->Errnum) << endl;
cout << "\tErrmsg: " << pLogin->Errmsg() << endl;

cout << endl;
return(pLogi n->Errnum());
}

cout << "Successful login for user: " << argv[1l] << endl;

Chapter 14, The EcxTracking Class 237

Using the EcxTracking Class

i f((pTracking = new EcxTracking())->Errnum()) {

cout << "EcxTracking Object
<< "\t Errnum
<< "\tErrnsg:

cout
cout

cout << endl;
return(pTracki ng->Errnun());

}

Error:" << endl;

<< pTracki ng- >Errnum() << endl;
<< pTracki ng->Errnsg() << endl;

i f ((pTracki ng->Set Logi n(*pLogin)).Errnun()) {

<< "EcxTracki ng. SetLogin() Failed:" << endl;

<< pTracki ng->Errnum() << endl;
<< pTracki ng->Errnsg() << endl;

cout

cout << "\tErrnum
<< "\tErrnsg:

cout
cout

<<

endl ;

return(pTracki ng->Errnum());

}

cout << "Created EcxTracking object!"

i f((pTracking->List()).

cout << "EcxTracking.
<< "\t Errnum
<< "\tErrnsg:

cout
cout

}

cout <<

Wk kk M

Errnum()) {

List() Failed:"
<< pTracki ng- >Errnum() << endl;
<< pTracki ng- >Errnsg() << endl;
return(pTracki ng->Errnum());

whi | e(pTracki ng->Mre()) {

cout
cout
cout
cout
cout
cout
cout
cout

pTracki ng- >Next () ;

}

<<
<<
<<
<<
<<
<<
<<
<<

<< pTracki ng->Mre() <<

"---" << endl;
"Recei ver Nane: " << pTracki
"State: " << pTracki
"Title: " << pTracki
"Val ue: " << pTracki
"SecondaryTitle: " << pTracki
"SecondaryVal ue: " << pTracki
endl ;

cout << "*** EcxTracking test conplete

retval

= 0;
return(retval);

238 Netscape ECXpert Site Administrator’s Handbook

<< endl;

<< endl;

records found. ***" << endl;

ng- >Recei ver Name() << endl;
ng->State() << endl;
ng->Title() << endl;

ng- >Val ue() << endl;

ng- >SecondaryTitl e() << endl;
ng- >Secondar yVal ue() << endl;

**xx" << endl;

02 July 99

EcxTracking Class Reference

EcxTracking Class Reference

Interface ecxtracking. h
Superclasses EcxBase
Subclasses None
Friend Classes None

Syntax class EcxTracking : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the state of the documents
you want to list:

Syntax static int COWPLETE;
static int | NPROGRESS;
static int WARNI NG
static int FAILED
static int UNKNOW,

COVPLETE Document processing is complete.

| NPROGRESS Document is being processed.

WARNI NG Document was processed with a warning.

FAI LED Document could not be processed due to errors.
UNKNOWN Document is unknown.

Constructor and Destructor

EcxTracking()

Creates an EcxTr acki ng object.

02 July 99 Chapter 14, The EcxTracking Class 239

EcxTracking Class Reference

Syntax EcxTracki ng(voi d);
EcxTr acki ng(EcxLogi n& | ogi n);

Parameters The constructor has the following parameters:
| ogin The login object to associate with this tracking object.
Discussion The first form of the constructor allows you to create a stack-based object. The

second form of the constructor requires that you create an EcxLogi n object
before you create this object.

Example See “Using the EcxTracking Class” on page 237.

See also The Set Logi n() method on page 247. The EcxLogi n class on page 127.

~EcxTracking()

Destroys an EcxTr acki ng object.
Syntax virtual ~EcxTracking(void);

Discussion The destructor is called when you delete the object. You can reuse an object
instead of deleting it by calling the object’s Cl ear () method. The destructor
does not destroy the associated EcxLogi n object.

Seealso The Cl ear () method on page 240.

Methods

This section describes the methods of the EcxTr acki ng class.

Clear()

Clears the state associated with an object, including its list.
Syntax void C ear(void);

Discussion All fields in the object are reset to 0 or NULL. A list contains no records.

240 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxTracking Class Reference

CreationDate()

Accesses the date the document was created.
Syntax const | ong CreationDate(void)
Returns A long integer that contains the date the document record was created.

Example See “Using the EcxTracking Class” on page 237.

Delete()

Deletes a document record.
Syntax EcxTracki ng& Del et e
Returns A reference to this tracking object.

Example See “Using the EcxTracking Class” on page 237.

DataState()

Determines what state the document data is in.
Syntax short DataState(void) const;
Returns A short integer that indicates what state the record data is in.

Discussion You can receive any of the following values:

Description Value
DSunknown 0
DSready for purge 1
DSpurged 2

02 July 99 Chapter 14, The EcxTracking Class 241

EcxTracking Class Reference

Example

Syntax
Returns

Example

Syntax
Returns

Example

Syntax

Parameters

DSready for archive 3
DSarchived 4
DSready for restore 5
DSrestored 6

See “Using the EcxTracking Class” on page 237.

DocType()

Determines the document type.
const char* DocType(voi d) const;
A pointer to a character string that indicates the document type.

See “Using the EcxTracking Class” on page 237.

FileName()

Accesses the file name of the document.
const char* Fil eName(void) const;
A pointer to a character string that contains the document’s file name.

See “Using the EcxTracking Class” on page 237.

Get()

Retrieves document ID records from the database.
EcxTracki ng& Get (EcxDocl d& doci d, const inst nmark_read = TRUE);
The Get () method has the following parameters:

doci d A reference to an EcxDocl d that specifies the document.

242 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Returns

Syntax

Parameters

Returns

Discussion

EcxTracking Class Reference

A reference to this tracking object.

List()

Retrieves a list of document records from the database.

EcxTracki ng& List(CStr receiver = NULL,
const struct tnf fromdate = NULL,
const struct tnt todate = NULL,
const int state_flag = O,
CStr sender = NULL);

The Li st () method has the following parameters:

recei ver A CSt r structure that specifies the receiver's member name.
frondate A pointer to a t mstructure that specifies the starting date.
todate A pointer to a t mstructure that specifies the ending date.
state_flag An integer that contains the state flags.

sender A CSt r structure that specifies the sender’'s member name.

A reference to this tracking object.

An administrator can specify any sender's member name in the sender
parameter. A non-administrator can specify only his or her user login name as
the sender’'s member name. If an administrator specifies NULL for the sender
parameter, which is the default, the sender’s member name is not used to select
records; all records matching the other criteria are retrieved. If a non-adminis-
trator specifies NULL for the sender parameter, only document records whose
sender’'s member name match the user’s login name and match the other
criteria are retrieved.

Values for the remaining criteria, if specified, are ANDed together:

= Specify a value for the r ecei ver parameter to restrict retrieval to records
for a specific recipient. If you do not specify a value for the r ecei ver
parameter, all recipients will be considered for retrieval.

= Specify a value for the f r ondat e parameter to restrict retrieval from the
specified starting date, inclusive. If you do not specify a value for the
f r ondat e parameter, all records will be considered.

Chapter 14, The EcxTracking Class 243

EcxTracking Class Reference

= Specify a value for the t odat e parameter to restrict retrieval to the
specified ending date, inclusive. If you do not specify a value for the
t odat e parameter, all records will be considered.

= Specify one or more flags for the st at e_f | ag parameter to restrict
retrieval to document records that match the specified state. If you do not
specify a value for the st at e_f | ag parameter, all records will be
considered. Valid flags are COMPLETE, | NPROGRESS, WARNI NG, and
FAI LED. The flags are ORed together before being ANDed with the other
criteria.

After calling the Li st () method, the document object’s fields contain values
from the record related to the first document that matches the criteria.

If you are trying to use this method to retrieve tracking IDs to enable you to
retrieve a particular value, but no value is being returned, simply skip to the
next tracking ID. For example, if you are using this method to get tracking IDs
to retrieve the translated file name from the database, not every tracking ID has
a corresponding translated file, because some tracking IDs are generated by
bundle.

Example See “Using the EcxTracking Class” on page 237.

See also “Class Variables” on page 239.

ModifyDate()

Accesses the date the document was last modified.
Syntax const | ong MdifyDate(void) const;
Returns A long integer that indicates the date the document was last modified

Example See “Using the EcxTracking Class” on page 237.

More()

Determines whether more records are left in the list.

Syntax | ong More(void);

244 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Returns

Discussion

Example

See also

Syntax
Returns

Discussion

Warning

Example

See also

Syntax
Returns

Example

02 July 99

EcxTracking Class Reference

A long integer that contains the number of records not yet accessed from the
list.

After calling the Li st () method and before calling the Next () method, the
Mor e() method returns the total number of records in the list. All records have
been accessed when the Mor e() method returns 0.

See “Using the EcxTracking Class” on page 237.
The Li st () method on page 243. The Next () method on page 245.

Next()

Associates the object with the next record in the list.
EcxTracki ng& Next (voi d);
A reference to this tracking object.

The Next () method sets the fields in the object to match those in the next
record in the list. The Next () method decrements the number of records not
yet accessed, which is returned by the Mor e() method.

Do not call the Next () method if the Mor e() method returns a value less
than 1; the results are unpredictable.

See “Using the EcxTracking Class” on page 237.
The Mor e() method on page 244.

Progress()

Determines the document’s progress.
const int Progress(void) const;
An integer that indicates the document’s progress.

See “Using the EcxTracking Class” on page 237.

Chapter 14, The EcxTracking Class 245

EcxTracking Class Reference

Syntax
Returns

Example

Syntax

Returns

Example

Syntax
Returns

Example

Syntax
Returns

Example

ReceiverName()

Determines the receiver’'s member name.

const char* Recei ver Nane(voi d) const;

A pointer to a character string that contains the name.

See “Using the EcxTracking Class” on page 237.

Release()

Determines the document’s EDI standard release number.

const char* Rel ease(void) const;

A pointer to a character string that indicates the document’s EDI standard

release number.

See “Using the EcxTracking Class” on page 237.

SecondaryTitle()

Determines the secondary title.
const char* SecondaryTitle(void) const;
A pointer to a character string that contains the title.

See “Using the EcxTracking Class” on page 237.

SecondaryValue()

Determines the secondary value.

const char* SecondaryVal ue(voi d) const;

A pointer to a character string that contains the value.

See “Using the EcxTracking Class” on page 237.

246 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

Syntax

Parameters

Returns

Discussion

Example

See also

Syntax

Parameters

Returns

Example

Syntax

Returns

EcxTracking Class Reference

SetLogin()

Allows the object to access the database.
EcxTracki ng& Set Logi n(EcxLogi n& | ogi n);
The Set Logi n() method has the following parameters:

| ogin A reference to a valid EcxLogi n object

A reference to this tracking object.

If you do not use the form of the constructor that accepts a login object, you
must call the Set Logi n() method before accessing this object.

See “Using the EcxTracking Class” on page 237.

The EcxTr acki ng constructor on page 239. The EcxLogi n class on
page 127.

SetReadyForPurge()

Specifies whether the document is ready to be purged.
EcxTr acki ng& Set ReadyFor Pur ge(EcxDocl d& doci d)
The Set ReadyFor Pur ge() method has the following parameters:

docid A reference to the document’s ID number

A reference to this tracking object.

See “Using the EcxTracking Class” on page 237.

Standard()

Determines the document’s EDI standard.
const char* Standard(void) const;

A pointer to a character string that contains the document’s EDI standard.

Chapter 14, The EcxTracking Class 247

EcxTracking Class Reference

Example See “Using the EcxTracking Class” on page 237.

State()

Determines the document’s state.
Syntax short State(void) const;
Returns A short integer that specifies the document’s state.

Discussion You can receive any of the following values:

Description Value
TSunknown - indicates NULL value 0
TSready - indicates service has yet to be invoked 1
TSinProgress - indicates service has been invoked 2
STSdoneOK - indicates service is done with no errors 3
TSdoneBad - indicates service is done with errors 4

TSalldoneOK - indicates last service on service list is done and 5
TRKState is TSdoneOK

TSbundled - identifies bundle generated trackings 6

Example See “Using the EcxTracking Class” on page 237.

Title()

Determines the document’s title.
Syntax const char* Title(void) const;
Returns A pointer to a character string that contains the title.

Example See “Using the EcxTracking Class” on page 237.

248 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Syntax
Returns

Discussion

Syntax
Returns

Example

Syntax

Returns

Example

02 July 99

EcxTracking Class Reference

TranslatedFileName()

Accesses the name of the translated file.
const char* Transl at edFi | eNane(voi d);
A pointer to a character string that contains the name of the translated file.

If you are trying to use this method to retrieve tracking IDs to enable you to
retrieve a particular value, but no value is being returned, simply skip to the
next tracking ID. For example, if you are using this method to get tracking IDs
to retrieve the translated file name from the database, not every tracking ID has
a corresponding translated file, because some tracking IDs are generated by
bundle.

Value()

Determines the document’s value.
const char* Val ue(void) const;
A pointer to a character string that contains the value.

See “Using the EcxTracking Class” on page 237.

Version()

Determines the document’s EDI standard version number.
const char* version(void) const;

A pointer to a character string that contains the document’s EDI strandard
version number.

See “Using the EcxTracking Class” on page 237.

Chapter 14, The EcxTracking Class 249

EcxTracking Class Reference

250 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxLog Class

his chapter describes the EcxLog class, which represents entries in the
ECXpert log. This chapter contains the following sections:

= About the EcxLog Class
= Using the EcxLog Class

= EcxLog Class Reference

02 July 99 Chapter 15, The EcxLog Class 251

About the EcxLog Class

About the EcxLog Class

The EcxLog class represents entries in the ECXpert log. You can use an
EcxLog object to add an entry to the log.

Methods Summary list:

Constructor and destructor
EcxLog()

~EcxLog()

Allowing database access
Set Logi n()

Logging an event
LogEvent ()

Resetting an object’s state
Cl ear ()

Accessing log information
Next

Mor e

Retri evelLog

ELId
ELEvent I d

ELCat egory
ELSeverity
ELEvent Short Msg

El Trkld

252 Netscape ECXpert Site Administrator’s Handbook

Creates an EcxLog object.
Destroys an EcxLog object.

Allows the object to access the database.

Adds an entry to the log.

Clears the state associated with an object.

Associates the object with the next record in the list.
Determines whether more records are left in the list.
Retrieves log information.

Determines the ID number of the event in the event
log.

Determines the ID number of the event in the event
log.

Determines the category of the event in the event log.
Determines the severity of the event in the event log.

Determines the short message associated with the
event in the event log.

Determines the tracking ID of the event in the event
log.

02 July 99

Using the EcxLog Class

ElIntgld Determines the interchange identifier.

ELG pld Determines the group ID of the event in the event
log.

El Docl d Determines the ID number of the document in the
event log.

El TDI d Determines the document-level internal tracking ID

associated with the event.

Using the EcxLog Class

02 July 99

The following example shows how to write infromational messages, warning
messages, and fatal error messages to the ECXpert log:

int main(int argc, char * argv[]) {

i f((pLog = new EcxLog())->Errnum()) {
cout << "EcxLog Object Error:" << endl;
cout << "\tErrnum " << pLog->Errnum() << endl;
cout << "\tErrmsg: " << pLog->Errnsg() << endl;
cout << endl;
return(pLog->Errnum());

}

i f((pLog->SetLogi n(*pLogin)).Errnum()) {
cout << "EcxLog. SetLogin() Failed:" << endl;
cout << "\tErrnum " << pLog->Errnum() << endl;
cout << "\tErrmsg: " << pLog->Errnmsg() << endl;
cout << endl;
return(pLog->Errnun());

}

cout << "Created EcxLog object!" << endl;

i f((pLog->LogEvent (99,
pLog- >i nf ormati onal ,
"This is a informational TEST nessage")).Errnum()) {
cout << "EcxLog.LogEvent() Failed:" << endl;
cout << "\tErrnum " << pLog->Errnum() << endl;
cout << "\tErrmsg: " << pLog->Errnmsg() << endl;
return(pLog->Errnun());

}

cout << "WROTE: This is a informational TEST nessage" << endl;

i f ((pLog->LogEvent (99,

Chapter 15, The EcxLog Class 253

EcxLog Class Reference

EcxLog C

pLog- >war ni ng,
"This is a warning TEST nessage")).Errnum()) {
cout << "EcxLog.LogEvent() Failed:" << endl;
cout << "\tErrnum " << pLog->Errnum() << endl;
cout << "\tErrmsg: " << pLog->Errnmsg() << endl;
return(pLog->Errnum());
}

cout << "WROTE: This is a warning TEST nessage" << endl;

i f ((pLog->LogEvent (99,
pLog->error,
"This is a error TEST nessage")).Errnum()) {
cout << "EcxLog.LogEvent() Failed:" << endl;
cout << "\tErrnum " << pLog->Errnum() << endl;
cout << "\tErrmsg: " << pLog->Errnmsg() << endl;
return(pLog->Errnun());
}

cout << "WROTE: This is an error TEST nessage" << endl;
cout << "*** FEcxLog test conplete ***" << endl;

retval = 0;
return(retval);

lass Reference

Interface ecxl 0g. h

Superclasses EcxBase

Subclasses None

Friend Classes

None

Syntax class EcxLog : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the kind of message being
written to the database:

254 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

Syntax

Syntax

Parameters

Discussion

Example

See also

Syntax

Discussion

EcxLog Class Reference

const int informational;
const int warning;
const int error;

i nf or mati onal Informational message.
war ni ng Warning message.
error Fatal error message.

Constructor and Destructor

EcxLog()

Creates an EcxLog object.

EcxLog(voi d);
EcxLog(EcxLogi n& | ogi n);

The constructor has the following parameters:
| ogin The login object to associate with this tracking object.
The first form of the constructor allows you to create a stack-based object. The

second form of the constructor requires that you create an EcxLogi n object
before you create this object.

See “Using the EcxLog Class” on page 253.
The Set Logi n() method on page 261. The EcxLogi n class on page 127.

~EcxLog()

Destroys an EcxLog object.
virtual ~EcxLog(void);

The destructor is called when you delete the object. The destructor does not
destroy the associated EcxLogi n object.

Chapter 15, The EcxLog Class 255

EcxLog Class Reference

Syntax

Discussion

Syntax

Returns

Example

Syntax
Returns

Example

Syntax

Methods

This section describes the methods of the EcxLog class.

Clear()

Clears the state associated with an object, including its list.
void Cear()

All fields in the object are reset to 0 or NULL. A list contains no records.

ELCategory()

Determines the functional area the event took place in.
const char* ELCategory() const;

A pointer to a character string that contains the functional area the event took
place in (e.g. bundle, dispatcher, parse, etc.).

See “Using the EcxLog Class” on page 253.

ELDocld()

Determines the ID number of the document in event log.
const char* ELDocld
A pointer to a character string that contains the document ID number.

See “Using the EcxLog Class” on page 253.

ELEventld()

Determines ID number associated with event in event log.

unsi gned ELEventld() const;

256 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxLog Class Reference

Returns An unsigned integer that contains the ID number associated with event in event
log.

Example See “Using the EcxLog Class” on page 253.

ELEventShortMsg()

Determines the short message associated with the event in the event log.
Syntax const char* ELEvent Short Msg() const;

Returns A pointer to a character string that contains the short message associated with
event in event log.

Example See “Using the EcxLog Class” on page 253.

ELGrpld()

Determines the group ID of the event in the event log.
Syntax unsi gned ELG pld() const;
Returns Unsigned integer that contains the group ID of event in event log.

Example See “Using the EcxLog Class” on page 253.

ELId()

Determines the ID number of the event in the event log.
Syntax unsigned ELId () const;
Returns Unsigned integer that contains the ID number of event in event log.

Example See “Using the EcxLog Class” on page 253.

ELIntgld()

Determines the interchange identifier.

02 July 99 Chapter 15, The EcxLog Class 257

EcxLog Class Reference

Syntax
Returns

Example

Syntax
Returns
Discussion

Example

Syntax

Returns

Example

Syntax
Returns

Example

258 Netscape ECXpert Site Administrator’s Handbook

unsi gned ELIntgld () const;
Unsigned integer that contains the interchange identifier.

See “Using the EcxLog Class” on page 253.

ELSeverity()

Severity associated with the event in the event log.

unsi gned ELSeverity () const;

Unsigned integer that contains the severity associated with event in event log.
The level of severity can be informational, warning, or error.

See “Using the EcxLog Class” on page 253.

ELTDId()

Determines the document-level internal tracking ID associated with the event.
const char* ELTDI d() const;

A pointer to a character string that contains the document-level internal tracking
ID associated with an event.

See “Using the EcxLog Class” on page 253

ELTrkid()

Track ID of the event in the event log.
unsi gned ELTrkld
Unsigned integer that contains the tracking ID of event in event log.

See “Using the EcxLog Class” on page 253.

02 July 99

02 July 99

Syntax

Parameters

Returns

Discussion

Note
Example

See also

Syntax

Returns

Discussion

Example

EcxLog Class Reference

LogEvent()

Adds an entry to the event log.

EcxLog& LogEvent(long errnum int severity, const char *
nmessage) ;

The LogEvent () method has the following parameters:

errnum A long integer that specifies the error number you want to
associate with the entry.

severity An integer that specifies the kind of entry.

message A pointer to a character string that specifies the messge to

write to the log.

A reference to this log object.

You can specify one of the following constant for the kind of entry: i nf or na-
tional, warni ng, or f at al . The user name of the logged-in user is also
written to the log.

The tracking ID written to the log is always O.
See “Using the EcxLog Class” on page 253.
“Class Variables” on page 254.

More()

Determines whether more records are left in the list.
| ong More(void);

A long integer that contains the number of records not yet accessed from the
list.

After calling the Li st () method and before calling the Next () method, the
Mor e() method returns the total number of records in the list. All records have
been accessed when the Mor e() method returns 0.

See “Using the EcxLog Class” on page 253.

Chapter 15, The EcxLog Class 259

EcxLog Class Reference

See also

Syntax
Returns

Discussion

Warning

Example

See also

Syntax

Parameters

The Next () method on page 260.

Next()

Associates the object with the next record in the list.
EcxDocunent & Next (voi d);
A reference to this document object.

The Next () method sets the fields in the object to match those in the next
record in the list. The Next () method decrements the number of records not
yet accessed, which is returned by the Mor e() method.

Do not call the Next () method if the Mor e() method returns a value less
than 1; the results are unpredictable.

See “Using the EcxLog Class” on page 253.
The Mor e() method on page 259.

RetrieveLog()

Retrieves log information.

EcxLog& RetrieveLog(const unsigned&trkld,
const char* sndr MBName,
const char* rcvr MBNane,
const |ong frondt,
const |long todt,
const short stateBitnmap);

The Retri evelLog() method has the following parameters:

sndr MBName A pointer to a character string that specifies the sender mem-
ber name.

260 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Returns

Example

Syntax

Parameters

Returns

Discussion

Example

See also

02 July 99

EcxLog Class Reference

r cvr MBNane A pointer to a character string that specifies the receiver name.
f r omdt A long integer that specifies the initial (“from”) date.

t odt A long integer that specifies the final (“to”) date

st at eBi t map Data state. Valid values:

0 = unknown
1 = readyForPurge

2 = purged

3 = readyForArchive
4 = archived

5 = readyForRestore
6 = restored

A pointer to this Ret ri evelLog object.

See “Using the EcxLog Class” on page 253

SetLogin()

Allows the object to access the database.
EcxTracki ng& Set Logi n(EcxLogi n& | ogi n);
The Set Logi n() method has the following parameters:

| ogin A reference to a valid EcxLogi n object

A reference to this tracking object.

If you do not use the form of the constructor that accepts a login object, you
must call the Set Logi n() method before accessing this object.

See “Using the EcxLog Class” on page 253.

The EcxLog constructor on page 255. The EcxLogi n class on page 127.

Chapter 15, The EcxLog Class 261

EcxLog Class Reference

262 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxFtpClient Class

his chapter describes the EcxFt pCl i ent class. The EcxFt pll i ent is
an FTP Client API. The EcxFt pCl i ent class defines methods you can
use to send and receive files via FTP.

. This chapter contains the following sections:
= About the EcxFtpClient Class
= Using the EcxFtpClient Class

= }EcxFtpClient Class Reference

02 July 99 Chapter 16, The EcxFtpClient Class 263

About the EcxFtpClient Class

About the EcxFtpClient Class

The EcxFt pd i ent () class is an FTP Client APl which defines methods you
can use to send and receive files via FTP. The EcxFt pCl i ent () class is based
on the RFC 959 FTP protocol.

Before you will be able to perform any FTP operations, you must first create
the EcxFt pd i ent () object and call the i ni t () method. You can then run
FTP commands using the RunConmand() method.

Methods Summary list;

Constructor and destructor

EcxFt pd i ent (voi d) Creates an EcxFt pCl i ent object.

virtual ~EcxFtpCient() Destroys an EcxFt pCl i ent object.

Initializing the FTP Client API

I nit Initializes the FTP client API

Accessing Entry Information

Get Li st Count () Retrieves the number of files in the current directory
listing

GetFirstListEntry() Retrieves the first file in the directory listing

Get Next Li st Entry() Retrieves the next file in the directory listing

Accessing FTP Replies

Get Repl yCode() Retrieves the last reply code

Get Repl yMsg() Retrieves the last reply message

| sRepl yGood Indicates whether the last FTP command executed

was successful or not
Running Commands

RunComuand Runs a command

Using the EcxFtpClient Class

The following sections show how to:
= List files in the current directory

= Retrieve the names of files in the current directory listing

264 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the EcxFtpClient Class

= Send and receive files

Listing Files in the Current Directory

The following example shows how to list all of the files in the current directory.
The RunCommand() method runs the | s and di r commands to generate a
directory listing.

int main(int argc, char * argv[])

{

int retval = -1;

/1

/1 List of ftp commands that we woul d be running using the Ecxpert
/1 ftp client API. W basically login to the rempte nmachine, run
/1 '1s’ and 'dir’ commands and dunp the output on the console.

/1
char * Ft pCommands[] =
{
"open nyhost. nyserver. conf,
"user actraadm actraadni',
"lI's /tm",
"dir /tmp",
nquit”,
|
const char * pListEntry = O;
Ecxlnit Ecxl nit Qbj ;

EcxFtplient * pFtpdientChj = 0;

do
{
if (EcxInitObj.Errnun() !'=0)
{ printf("Failed to initialize Ecxlnit object.\n");
br eak;
}

if ((pFtpdientObj = new EcxFtpdient) == 0)
{

printf("No nenory to create Ecxpert ftp client object.\n");
br eak;

}
if (pFtpdientObj->Init("ecx.ini").Errnum))

printf("Failed to setup Ecxpert ftp client object.\n");
br eak;

02 July 99 Chapter 16, The EcxFtpClient Class 265

Using the EcxFtpClient Class

}
for (int i =0; strlen(FtpCommands[i]) != 0; ++i)
{
printf("\nExecuting Ftp command - %\n", FtpCommands[i]);
if (pFtpdientbj->RunComrand(Ft pCommands[i]).Errnun())
printf("Error: %d - Could not execute command.\n",
pFt pQient Obj - >Errnun());
br eak;
}
printf("Ftp reply code = %\ n", pFtpdientObj->GetReplyCode());
printf("Ftp reply nessage = %\n", pFtpdientj->GetRepl yMsg());
if (pFtpdientj->lsReplyGood() != TRUE)
printf("Command could not be executed successfully.\n");
}
el se
{
Il
/1 Display the output of the Is/dir conmand
Il
printf("Renote directory consists of %l entries.\n\n",
pFt pC i ent Obj - >Get Li st Count ());
pListEntry = pFtpdientQbj->CetFirstListEntry();
while(pListEntry !'=0)
{
printf("%\n", pListEntry);
pListEntry = pFtpdient Obj->Cet NextListEntry();
}
}
}
retval = pFtpdientQj->Errnun();
}
while(0);

if (pFtpCientOhj)
del ete pFtpCientObj;

return(retval);

266 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Using the EcxFtpClient Class

Retrieving File Names

The following example shows how to retrieve file names from the directory
listing. The Get Fi rstLi st Entry() and Get Next Li st Entry() methods
retrieve retrieve the first and all subsequent file names from the directory

listing.
int main(int argc, char * argv[])
{

I ong retval = -1;

char szTnpBuf f [2048] ;
const char * pListEntry = 0;
Ecxl nit Ecxl nit Obj ;

EcxFtplient * pFtpdientChj = 0;

do
{
if (EcxInitQj.Errnun() !'=0)
{ printf("Failed to initialize Ecxlnit object.\n");
break;
}

if ((pFtpdientObj = new EcxFtpCient) == 0)
{

printf("No nenory to create Ecxpert ftp client object.\n");
break;

}
if (prtplientObj->Init("ecx.ini").Errnum))

printf("Failed to setup Ecxpert ftp client object.\n");
break;

printf("ecxftp> ");
gets(szTnpBuff);
if (pFtpCientObj->RunCommand(szTnpBuff). Errnum())
printf("Error: %d - Could not execute command.\n",
pFt pdient Obj - >Errnun());

br eak;

}

printf("Ftp reply code = %\ n", pFtpdientj->GetRepl yCode());

Chapter 16, The EcxFtpClient Class 267

Using the EcxFtpClient Class

printf("Ftp reply nessage = %\n", pFtpdientj->GetRepl yMsg());
if (pFtpdientbj->lsReplyGood() != TRUE)

printf("Command could not be executed successfully.\n");

}
else if (pFtpdientj->CetListCount() > 0)
{
pListEntry = pFtpdientQbj->CetFirstListEntry();
while(pListEntry !=0)
{
printf("%\n", pListEntry);
pListEntry = pFtpdient Obj->Cet NextListEntry();
}
}

}
while(strcnp(szTrnpBuff, "quit") !'=0);

retval = pFtpdient Cbj->Errnum);
}
while(0);

if (pFtpCientObj)
del ete pFtpCientObj;

return(retval);

Transferring Files

The following example shows how to send and receive files using the EcxFtp-
Client API. The RunComand() method runs the FTP get and put commands
to transfer an ascii file and a binary file.

int

{

mai n(int argc, char * argv[])
I ong retval = -1;
/1

/1 List of ftp commands that we woul d be running using the Ecxpert
/1 ftp client API. W basically login to the renote machi ne and
/1 run get and put commands to transfer an ascii file and a binary file.
/1
char * Ft pCommands[] =
{

"open flatline. ncomcont,

"user smani 2 smani 2",

"get renpte-ascii-file local-ascii-file",

"put local-ascii-file renpte-ascii-file.bak",

"bi nary",

"get renmote-binary-file |ocal-binary-file",

"put |ocal-binary-file renote-binary-file.bak",

268 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the EcxFtpClient Class

"quit®,
h
Ecxlnit Ecxl nit Qbj ;

EcxFtplient * pFtpdientChj = 0;

do
{
if (EcxInitObj.Errnun() !'=0)
{
printf("Failed to initialize Ecxlnit object.\n");
br eak;
}
if ((pFtpdientObj = new EcxFtplient) == 0)
{
printf("No nenory to create Ecxpert ftp client object.\n");
br eak;
}
if (pFtpdientObj->Init("ecx.ini").Errnum))
{
printf("Failed to setup Ecxpert ftp client object.\n");
br eak;
}
for (int i =0; strlen(FtpConmmands[i]) != 0; ++i)
{
printf("\nExecuting Ftp command - %\n", FtpCommands[i]);
if (pFtpdientj->RunComand(Ft pCommands[i]).Errnun())
{
printf("Error: %d - Could not execute command.\n",
pFt pd i ent j ->Errnum()) ;
br eak;
}
printf("Ftp reply code = %\ n", pFtpCdientj->GetRepl yCode());
printf("Ftp reply nessage = %\n", pFtpdientj->GetRepl yMsg());
if (pFtpdientbj->lsReplyGood() != TRUE)
{
printf("Command could not be executed successfully.\n");
}
}
retval = pFtpdient Qoj->Errnun();
}
while(0);

if (pFtpCientObj)
del ete pFtpCientObj;

02 July 99 Chapter 16, The EcxFtpClient Class 269

}EcxFtpClient Class Reference

return(retval);

yEcxFtpClient Class Reference

Interface ecxftpclient.h
Superclasses EcxBase
Subclasses None
Friend Classes None

Syntax class EcxFtpOient : public EcxBase { ... };

Constructor and Destructor

EcxFtpClient()

Creates an EcxFt pCl i ent object.
Syntax EcxFtpCient(void);

Example See “Using the EcxFtpClient Class” on page 264.

~EcxFtpClient()

Destroys an EcxFt pCl i ent object.
Syntax virtual ~EcxFtpdient();

Example See “Using the EcxFtpClient Class” on page 264.

Methods

This section describes the methods of the EcxFt pd i ent class.

270 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Syntax
Returns

Discussion

Example

Syntax

Returns

Discussion

Example

Syntax

Returns

Example

02 July 99

}EcxFtpClient Class Reference

GetListCount ()

Retrieves the number of files in the current directory.
virtual int GetlListCount(void)
The number of files in the current directory.

After running the | s or di r command, this method retrieves the number of
files in the directory listing.

See “Listing Files in the Current Directory” on page 265.

GetFirstListEntry ()

Retrieves the name of the first file in the directory listing.
virtual const char* GetFirstListEntry(void)

A pointer to a character string that contains the name of the first file in the
directory listing.

After running the | s or di r command, this method retrieves the first file in the
directory listing.

See “Listing Files in the Current Directory” on page 265.

GetNextListEntry ()

Retrieves the name of the next file in the directory listing.
virtual const char* GetNextListEntry(void)

A pointer to a character string that contains the name of the next file in the
directory listing.

See “Listing Files in the Current Directory” on page 265.

Chapter 16, The EcxFtpClient Class 271

Syntax

Returns

Example

Syntax

Returns

Example

Syntax

Parameters

Returns
Discussion

Example

272 Netscape ECXpert Site Administrator’s Handbook

}EcxFtpClient Class Reference

GetReplyCode ()

Retrives the reply code for the last command executed.
virtual int GetReplyCode(void)

A pointer to an integer representing the reply code for the last command
executed.

See “Using the EcxFtpClient Class” on page 264.

GetReplyMsg ()

Retrieves the reply message for the last command executed.
virtual const char* GetRepl yMsg(voi d)

A pointer to a character string that contains the reply message for the last
command executed.

See “Using the EcxFtpClient Class” on page 264.

Init ()

Initializes the FTP client API.
virtual EcxFtpdient& Init(const char* pEcxlni Fi|l eNane)
The | ni t () method has the following parameters:

pEcxI ni Fi | eName A pointer to a character string that contains the full path to the

ECXpert initialization file

A reference to this EcxFt pd i ent object.
This method must be called before you can call the RunCommand() method.

See “Using the EcxFtpClient Class” on page 264.

02 July 99

Syntax

Returns

Example

Syntax

Parameters

Returns

Example

02 July 99

}EcxFtpClient Class Reference

IsReplyGood ()

Indicates whether the last FTP command executed was successful or not.

virtual int |sReplyGood(void)

Returns a 0 or 1. A value of 0 indicates that the last FTP command failed, and a
value of 1 indicates that the last FTP command executed successfully.

See “Using the EcxFtpClient Class” on page 264.

RunCommand ()

Runs a command.

virtual EcxFtpdient& RunConmand(const char* pCrdString)

The RunConmand() method has the following parameters:

pCmdStri ng A character string that contains the FTP client command to be
run

A reference to this EcxFt pCl i ent object.

See “Using the EcxFtpClient Class” on page 264.

Chapter 16, The EcxFtpClient Class 273

}EcxFtpClient Class Reference

274 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxService Class

his chapter describes the EcxSer vi ce class, which represents service
records in an ECXpert database. This chapter contains the following
sections:

= About the EcxService Class
= Using the EcxService Class

e EcxServiceClass Reference

02 July 99 Chapter 17, The EcxService Class 275

About the EcxService Class

About the EcxService Class

Methods

The EcxSer vi ce() class represents service records in an ECXpert database.
Only administrators can add, change, or delete a service record. A user must be
logged in to the database before accessing a record.

Summary list:

Constructor and destructor

EcxServi ce(voi d)

virtual ~EcxService(void)

Allowing database access
Set Logi n

Creates an EcxSer vi ce object.
Destroys an EcxSer vi ce object.

Allows the object to access the database.

Adding, retrieving, changing and deleting service records

Add

Change

Del ete

Get

Listing service records

Li st

Mor e

Next

Resetting an object’s state

Cl ear

Accessing key fields
Id

Accessing other fields
Nanme

Type
Pat hNanme

Ent r yNane
MaxThr ead

Par am

276 Netscape ECXpert Site Administrator’s Handbook

Adds a service record to the database.
Changes a service record in the database.
Deletes a service from the database.

Retrieves a service record from the database.

Retrieves a list of service records from the database
Determines whether more records are left in the list.
Associates the object with the next record in the list.

Clears the state associated with an object, including its
list

Determines or specifies the ID number of the service.

Determines or specifies the name of the service.
Determines or specifies the service type.

Determines or specifies the path name to the service
code file.

Determines or specifies the entry name of the service.

Determines or specifies the maximum number of
threads the service can have.

Determines or specifies the service description.

02 July 99

Using the EcxService Class

ObjPerm Determines or specifies the record’s access permis-
sions.

ModBy Gr oup Determines the group that last modified the record.

ModByUser Determines the user that last modified the record.

ModDt Determines the date the record was last modified.

Using the EcxService Class

02 July 99

The following sections show how to:
= Create a service object

< Add a service

= List all services

= Modify a service

= Delete a service

Creating a Service Object

The following example shows how to create a Service object.
ECXService * pService = NULL;

if((pService = new EcxService())->Errnun()) {
cout << “EcxServiceObjectError:” << endl;
cout << “tErrnum: “ << pService->Errnum() << endl;
cout << “tErrmsg: “ << pService->Errmsg() << endl;
return(NULL);

}

if((pService->SetLogin(*pLogin)).Errnum()) {
cout << “EcxService.SetLogin() Failed:” << endl;
cout << “tErrnum: “ << pService->Errnum() << endl;
cout << “tErrmsg: “ << pService->Errmsg() << endl;
return(NULL);

return (pService);

Chapter 17, The EcxService Class 277

Using the EcxService Class

Adding a Service

The following example shows how to add a service.

pServi ce->Cl ear();

pService->Name(“Test service”);
pService->Type(10);
pService->PathName(“TestPathName”);
pService->EntryName(“TestEntryName”);
pService->MaxThread(5);
pService->Param(“Test param”);
pService->0ObjPerm(755);

if((pService->Add()).Errnum()) {
cout << “EcxService.add() Failed” << endl;
cout << “tErrnum: “ << pService->Errnum() << endl;
cout << “tErrmsg: “ << pService->Errmsg() << endl;
return(NULL);

}

id = pService->1d();
cout << “*** Added service: “ << id << endl;

return(0);

Listing All Services

The following example shows how to generate a list of all services.

pService->Clear();

If((pService->List()).Errnum()) [
cout << “EcxService.List() Failed:” << endl;
cout << “tErrnum: “ << pService->Errmnum() << endl;
cout << “tErrmsg: “ << pService->Errmsg() << endl;
return (pService->Errnum());

}

cout << “*** | jsting Services” << pService ->More();
cout << “records found. ***" << endl;

while (pService->More()) {

cout << pService->1d() <<
cout << pService->Name() <<
cout << pService->Type() <<

278 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

cout << pService->Pat hNane() <<
cout << pService->EntryName() <<“”;

cout << pService->MaxThread() <<*“”;

cout << pService->Param() <<

cout << pService->ObjPerm() <<

cout << pService->ModByGroup() <<*“";

cout << pService->ModByUser() << *“";

cout << pService->ModDt() <<
pService->Next(;

}

return(0);

Modifying a Service

The following example shows how to modify a service.

pService->Clear();
pService->ld(id);

if((pService->Get()).Errnum()) {
cout << “EcxService.Get() Failed” << endl;
cout << “tErrnum: “ << pService->Errnum() << endl;
cout << “tErrmsg: “ << pService->Errmsg() << endl;
return(pService->Errnum());

}
pservice->Type(20);
if((pService->Change()).Errnum()) {
cout << “EcxService.Change() Failed:” << endl;
cout << “tErrnum: “ << pService->Errnum() << endl;

cout << “tErrmsg: “ << pService->Errmsg() << endl;
return(pService->Errnum());

}

return(0);

Deleting a Service

The following example shows how to delete a service.

Using the EcxService Class

Chapter 17, The EcxService Class 279

EcxServiceClass Reference

pServi ce->Cl ear();
pService->Id(id);

if((pService->Delete()).Errnum)) {
cout << “EcxService.Delete() Failed” << endl;
cout << “tErrnum: “ << pService->Errnum() << endl;
cout << “tErrmsg: “ << pService->Errmsg() << endl;
return(pService->Errnum());

cout << “*** Deleted service: “ << id << endl;

return(0);

EcxServiceClass Reference

Interface ecxservice. h
Superclasses EcxBase
Subclasses None
Friend Classes None

Syntax class EcxService : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the member as an adminis-
trator:

Syntax static int ADM N STRATOR,

ADM NI STRATOR Administrator

280 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Example

Syntax

Example

Syntax
Returns

Discussion

Example

See also

EcxServiceClass Reference

Constructor and Destructor

EcxService(void)

Creates an EcxSer vi ce object.

EcxServi ce(voi d);
EcxSer vi ce(EcxLogi n& ogi n)

See “Using the EcxService Class” on page 277.

~EcxService(void)

Destroys an EcxSer vi ce object.
virtual ~EcxService(void);

See “Using the EcxService Class” on page 277.

Methods

This section describes the methods of the EcxSer vi ce class.

Add ()

Adds a service record to the database.
Ecxservi ce& Add(void);
A reference to this service object.

You must be an administrator and be logged in before calling this method. You
must specify the service’s ID number in the object, by calling the | d() method,
before calling this method.

See “Adding a Service” on page 278.
The 1 d() method on page 283.

Chapter 17, The EcxService Class 281

EcxServiceClass Reference

Change()

Changes a service record in the database.
Syntax EcxServi ce& Change(void);
Returns A reference to this service object.

Discussion You must be an administrator and be logged in before calling this method. This
method updates the last record retrieved by calling the object’s Get (),
Li st (), or Next () method. You must specify the service’s ID number in the
object, by calling the | d() method, before calling this method.

Warning If you do not call the object’s Get (), Li st (), or Next () method first, the
object’s ID number field, which is set by calling the | d() method, specifies the
record that is changed. In this case, the record is completely overwritten using
the object’s fields. Any fields not set in the object will be replaced by 0 or NULL
in the database.

Example See “Modifying a Service” on page 279.

See also The Get () method on page 283. The Li st () method on page 284. The
Next () method on page 286. The | d() method on page 283.

Clear()

Clears the state associated with an object, including its list.
Syntax void C ear(void);

Example See “Adding a Service” on page 278.

Delete()

Deletes a service from the database.
Syntax EcxServi ce& Del ete(void);

Returns A reference to this service object.

282 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Discussion

Example

See also

Syntax

Returns

Discussion

Example

Syntax
Returns

Discussion

Example

See also

EcxServiceClass Reference

You must be an administrator and be logged in before calling this method. You
must specify the service’s ID number in the object, by calling the | d() method,
before calling this method.

See “Deleting a Service” on page 279.

The | d() method on page 283.

EntryName ()

Determines or specifies the entry name of the service.

const char * Name() const;
voi d EntryNane(const char*);

The first form of the method returns a pointer to a character string that contains
the entry name of the service.

Use the first form of the method to determine the service entry name. Use the
second form to specify the service entry name.

See “Adding a Service” on page 278.

Get()

Retrieves a service record from the database.
EcxServi ce& Get (void);
A reference to this service object.

You must specify the service’s ID number in the object, by calling the | d()
method, before calling this method.

See “Adding a Service” on page 278.
The | d() method on page 283.

Id ()

Determines or specifies the ID number of the service.

Chapter 17, The EcxService Class 283

EcxServiceClass Reference

Syntax

Returns

Discussion

Example

Syntax
Returns

Example

Syntax

Returns

Discussion

Example

unsigned int Id()const;
voi d Id(const unsigned int)

The first form of the method returns an unsigned integer that contains the 1D
number of the service.

Before you call the Add(), Change(), Del ete(), or Get () methods, you
must first specify the service’s ID number in the object by calling the | d()
method. Use the first form of the method to determine the service’s ID number.
Use the second form to specify the service’s ID number.

See “Adding a Service” on page 278.

List()

Retrieves a list of service records from the database.
EcxServi ce& List(void);

A reference to this service object.

See “Listing All Services” on page 278.

MaxThread ()

Determines or specifies the maximum number of threads the service can have.

unsi gned int MaxThread() const;
voi d MaxThr ead(const unsigned int);

The first form of the method returns an unsigned integer that contains the
maximum number of threads.

Use the first form of the method to determine the maximum number of threads.
Use the second form to specify the maximum number of threads.

See “Adding a Service” on page 278.

ModByGroup()

Determines the group that last modified the record.

284 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Syntax

Returns

Syntax

Returns

Syntax

Returns

Syntax

Returns

Discussion

Example

See also

EcxServiceClass Reference

const char* MydByG oup() const;

A pointer to a character string that contains the group.

ModByUser()

Determines the user that last modified the record.
const char* MydByUser () const;

A pointer to a character string that contains the user name.

ModDt()

Determines the date the record was last modified.
const char* MydDt () const;

A pointer to a character string that contains the date.

More ()

Determines whether more records are left in the list.
| ong More(void);

A long integer that contains the number of records not yet accessed from the
list.

After calling the Li st () method and before calling the Next () method, the
Mor e() method returns the total number of records in the list. All records have
been accessed when the Mor e() method returns 0.

See “Listing All Services” on page 278.
The Li st () method on page 284. The Next () method on page 284.

Name()

Determines or specifies the name of the service.

Chapter 17, The EcxService Class 285

EcxServiceClass Reference

Syntax

Parameters

Returns

Discussion

Example

Syntax

Returns

Discussion

Warning

Example

See also

Syntax

286 Netscape ECXpert Site Administrator’s Handbook

const char* Name() const;
voi d Name(const char* nane);

The Name() method has the following parameters:

name A pointer to a character string that contains the service’s name.

The first form of the method returns a pointer to a character string that contains
the name.

Use the first form of the method to determine the service’s name. Use the
second form to specify the name.

See “Adding a Service” on page 278.

Next()

Associates the object with the next record in the list.
EcxServi ce& Next (void);
A reference to this member object.

The Next () method sets the fields in the object to match those in the next
record in the list. The Next () method decrements the number of records not
yet accessed, which is returned by the Mor e() method.

Do not call the Next () method if the Mor e() method returns a value less
than 1; the results are unpredictable.

See “Listing All Services” on page 278.
The Mor e() method on page 285.

ObjPerm()

Determines or specifies the record’s access permissions.

unsigned int CbjPerm() const;
voi d Obj Pern{const unsigned int perm ssions);

02 July 99

Parameters

Returns

Discussion

Example

Syntax

Returns

Discussion

Syntax

Returns

Discussion

02 July 99

EcxServiceClass Reference

The Obj Per n() method has the following parameters:

per ni ssi ons An unsigned integer that specifies the access permissions.
The first form of the method returns an unsigned integer that contains the
permissions.

Use the first form of the method to determine the record’s access permissions.
Use the second form to specify the permissions. The Gbj Per m() method does
not modify the database.

See “Adding a Service” on page 278.

Param ()

Determines or specifies the service description.

const char * Paran() const;
voi d Param(const char*);

The first form of the method returns a pointer to a character string that contains
the service description.

Use the first form of the method to determine the service description. Use the
second form to specify the service description.

PathName ()

Determines or specifies the path name to the service code file.

const char * Name() const;
voi d Pat hName(const char*);

The first form of the method returns a pointer to a character string that contains
the path name.

Use the first form of the method to determine the path name to the service
code file. Use the second form to specify the path name to the service code file.

Chapter 17, The EcxService Class 287

EcxServiceClass Reference

Syntax

Parameters

Returns

Discussion

Example

See also

Syntax

Parameters

Returns

SetLogin()

Allows the object to access the database.
EcxServi ce& Set Logi n(EcxLogi n& | ogi n);
The Set Logi n() method has the following parameters:

| ogin A reference to a valid EcxLogi n object

A reference to this service object.

If you do not use the form of the constructor that accepts a login object, you
must call the Set Logi n() method before using this object.

See “Creating a Service Object” on page 277.

The EcxSer vi ce constructor on page 281. The EcxLogi n class on page 127.

Type()

Determines or specifies the type of service.

unsi gned int Type() const;
voi d Type(const unsigned int type);

The Type() method has the following parameters:

type An unsigned integer that specifies whether the member is an
administrator.

The first form of the method returns an unsigned integer that contains the type.

288 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Discussion

Example

See also

You can use any of the following values:

Constant Value
STunknown 0
STinternal 1
STscript 2
STexe 3
STdll 4

See “Adding a Service” on page 278.
“Class Variables” on page 280.

EcxServiceClass Reference

Description
unknown

internal service (e.g. parse,
translate)
external script file

external executable file

a function in a shared library
(i.e. DLL or .s0)

Chapter 17, The EcxService Class 289

EcxServiceClass Reference

290 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Chapter

The EcxServiceList Class

his chapter describes the EcxSer vi ceLi st class, which represents
service list records in an ECXpert database. This chapter contains the
following sections:

= About the EcxServiceList Class
= Using the EcxServiceList Class

« EcxServicelist Class Reference

02 July 99 Chapter 18, The EcxServiceList Class 291

About the EcxServicelList Class

About the EcxServiceList Class

The EcxSer vi celLi st () class defines methods you can use to

Methods

Summary list:

Constructor and destructor

EcxServi celLi st (voi d)

vi rtual

~EcxSer vi ceLi st (voi d)

Allowing database access
Set Logi n

Creates an EcxSer vi celLi st object.
Destroys an EcxSer vi celLi st object.

Allows the object to access the database.

Adding, retrieving, changing and deleting service list records

Add

Change

Del et e

Cet

Listing service list records
Li st

Mor e
Next

Resetting an object’s state

Cl ear

Accessing key fields
Servi celLi st Name

SegNum

Accessing other fields
Sndr MBNane

Rcvr MBNane
TypeNane

SVRI d
SVRNane

292 Netscape ECXpert Site Administrator’s Handbook

Adds a service list record to the database.
Changes a service list record in the database.
Deletes a service list from the database.
Retrieves a service list record from the database.

Retrieves a list of service list records from the data-
base

Determines whether more records are left in the list.
Associates the object with the next record in the list.

Clears the state associated with an object, including its
list.

Determines or specifies the service list name

Determines or specifies the sequence number of the
service in the service list.

Determines or specifies the sending member name.
Determines or specifies the receiving member name.

Determines or specifies the service file type name OR
service data object type name.

Determines or specifies the service ID.
Determines or specifies the service name.

02 July 99

Using the EcxServicelList Class

ServiceParams Determines or specifies the service parameters.

ErrorHandler Determines the name of user-specified service for
error handler.

Desc Determines or specifies the service description.

ObjPerm Determines or specifies the record’s access permis-
sions.

MbdBy G oup Determines the group that last modified the record.

ModByUser Determines the user that last modified the record.

ModDt Determines the date the record was last modified.

Using the EcxServiceList Class

The following sections show how to:
= Create a service list object

= Add a service list

= List all service lists

= Modify a service list

= Delete a service list

Creating a Service List Object

The following example shows how to create a ServiceList object.

ECXServi ceLi st * pServiceList = NULL;

i f((pServiceList = new EcxServicelList())->Errnun()) {
cout << “EcxServiceListObjectError:” << endl;
cout << “tErrnum: “ << pServiceList->Errnum() << endl;
cout << “tErrmsg: “ << pServiceList->Errmsg() << endl;
return(NULL);

}

if((pServicelList->SetLogin(*pLogin)).Errnum()) {
cout << “EcxServiceList.SetLogin() Failed:” << endl;

Chapter 18, The EcxServiceList Class 293

Using the EcxServicelList Class

cout << “tErrnum: “ << pServiceList->Errnum() << endl;
cout << “tErrmsg: “ << pServiceList->Errmsg() << endl;
cout << endl;

delete pServicelList;

return(NULL);

return (pServiceList);

Adding a Service List

The following example shows how to add a service list.

pServicelList->Clear();

pService->ServiceListName(“slname”);
pService->SeqgNum(seqNum);
pService->SndrMBName(“ectest1”);
pService->RcvrMBName(“ectest2”);
pService->TypeName(“Test Type”);
pService->SVRId(201);
pService->SVRName(Parse);
pService->ServiceParams(“Test Service Params”);
pService->ErrorHandler(“Test Error Handler");
pService->Desc(“Test Desc”);
pService->0ObjPerm(755);

if((pService->Add()).Errnum()) {
cout << “EcxServiceList.add() Failed” << endl;
cout << “tErrnum: “ << pServiceList->Errnum() << endl;

cout << “tErrmsg: “ << pServiceList->Errmsg() << endl;
return(NULL);

}

id = pService->1d();

w ou

cout << “*** Added serviceList: “ << slname <<, “ << seqNum << endl;

return(0);

Listing All Service Lists

The following example shows how to generate a list of all service lists.

294 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Using the EcxServicelList Class

pServi celLi st->Clear();

If((pServiceList->List()).Errnunm()) [
cout << “EcxServiceList.List() Failed:” << endl;
cout << “tErrnum: “ << pServiceList->Errnum() << endl;
cout << “tErrmsg: “ << pServiceList->Errmsg() << endl;
return (pServiceList->Errnum());

}

cout << “*** | jsting serviceLists” << pServiceList->More();
cout << “records found. ***” << endl;

while (pServiceList->More()) {

cout << pServiceList->ServiceListName() <<
cout << pServicelList->SeqName() <<
cout << pServiceList->SndrMBName() <<
cout << pServiceList->RcvrMBName() <<
cout << pServicelList->TypeName() <<t
cout << pServiceList->SVRId() <<
cout << pServiceList->SVRName() <<
cout << pServicelList->ServiceParams() <<
cout << pServiceList->ErrorHandler() <
cout << pServiceList->Desc() <<
cout << pServiceList->ObjPerm() <<
cout << pServiceList->ModByGroup() <<
cout << pServiceList->ModByUser() <<t
cout << pServiceList->ModDt() <<
pService->Next(;

}

return(0);

Modifying a Service List

The following example shows how to modify a service list.

pServicelList->Clear();
pServicelList->ServiceListName(slname);
pServiceList->SegNum(seqNum);

if((pServiceList->Get()).Errnum()) {
cout << “EcxServicelList.Get() Failed” << endl;
cout << “tErrnum: “ << pServiceList->Errnum() << endl;
cout << “tErrmsg: “ << pServiceList->Errmsg() << endl;
return(pServiceList->Errnum());

}

pServicelList->TypeName(“Changed Type”);

02 July 99 Chapter 18, The EcxServiceList Class 295

EcxServicelList Class Reference

i f((pServiceList->Change()).Errnum()) {
cout << “EcxServiceList.Change() Failed:” << endl;
cout << “tErrnum: “ << pServiceList->Errnum() << endl;
cout << “tErrmsg: “ << pServiceList->Errmsg() << endl;
return(pServiceList->Errnum());

cout << “*** Changed serviceList: “ << slname << *“, “ << segNum << endl;

return(0);

Deleting a Service List

The following example shows how to delete a list of all service lists.

pServiceList->Clear();
pServiceList->ld(id);
pServiceList->SeqNum(segNum)

if((pServicelList->Delete()).Errnum()) {
cout << “EcxServicelList.Delete() Failed” << endl;
cout << “tErrnum: “ << pServiceList->Errnum() << endl;
cout << “tErrmsg: “ << pServiceList->Errmsg() << endl;
return(pServiceList->Errnum());

cout << “*** Deleted serviceList: “ << slname << “, “ << seqNum << endl;

return(0);

EcxServiceList Class Reference

Interface ecxservice. h
Superclasses EcxBase
Subclasses None

Friend Classes None

296 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxServiceList Class Reference

Syntax class EcxFtpOient : public EcxBase { ... };

Class Variables

The following class variables allow you to identify the member as an adminis-
trator:

Syntax static int ADM N STRATOR;

ADM NI STRATOR Administrator

Constructor and Destructor

EcxServiceList(void)

Creates an EcxFt pdl i ent object.

Syntax EcxServi celi st (void);
EcxServi celLi st (EcxLogi n& ogi n)

Example See “Using the EcxServiceList Class” on page 293.

~EcxServiceList(void)

Destroys an EcxFt pCl i ent object.
Syntax virtual ~EcxServicelist(void);

Example See “Using the EcxServiceList Class” on page 293.

Methods

This section describes the methods of the EcxFt pd i ent class.

02 July 99 Chapter 18, The EcxServiceList Class 297

EcxServicelList Class Reference

Syntax
Returns

Discussion

Example

See also

Syntax
Returns

Discussion

Warning

Example

Add ()

Adds a service list record to the database.
EcxServi ceLi st & Add(voi d);
A reference to this service list object.

You must be an administrator and be logged in before calling this method. You
must specify the service list name in the object, by calling the Ser vi ce-
Li st Name() method, and specify the sequence number of the service in the
service list, by calling the SeqNun{) method, before calling this method.

See “Adding a Service List” on page 294.

The Ser vi ceLi st Name() method on page 304. The SegNum() method on
page 303.

Change()

Changes a service list record in the database.
EcxServi ceLi st & Change(voi d);
A reference to this service list object.

This method updates the last record retrieved by calling the object’s Get (),
Li st (), or Next () method. You must be an administrator and be logged in
before calling this method. You must specify the service list name in the object,
by calling the Ser vi ceLi st Nane() method, and specify the sequence
number of the service in the service list, by calling the SeqNun{) method,
before calling this method.

If you do not call the object’'s Get (), Li st (), or Next () method first, the
object’s name and sequence number fields, which are set by calling the

Servi ceLi st Name() method and the SeqNum() method, specify the record
that is changed. In this case, the record is completely overwritten using the
object’s fields. Any fields not set in the object will be replaced by 0 or NULL in
the database.

See “Modifying a Service List” on page 295.

298 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

See also

Syntax

Example

Syntax
Returns

Discussion

Example

See also

Syntax

Returns

EcxServiceList Class Reference

The Get () method on page 300. The Li st () method on page 300. The
Next () method on page 302. The Ser vi ceLi st Nanme() method on
page 304. The SegNum() method on page 303.

Clear()

Clears the state associated with an object, including its list.
void Cear(void);

See “Listing All Service Lists” on page 294.

Delete()

Deletes a service list from the database.
EcxServi ceLi st & Del et e(voi d);
A reference to this service list object.

You must be an administrator and be logged in before calling this method. You
must specify the service list name in the object, by calling the Ser vi ce-
Li st Name() method, and specify the sequence number of the service in the
service list, by calling the SeqNun{) method, before calling this method.

See “Deleting a Service List” on page 296.

The Ser vi ceLi st Name() method on page 304. The SegNum() method on
page 303.

Desc ()

Determines or specifies the service description.

const char * Desc() const;
voi d Desc(const char*);

The first form of the method returns a pointer to a character string that contains
the service list description.

Chapter 18, The EcxServiceList Class 299

EcxServicelList Class Reference

Discussion

Example

Syntax

Returns

Discussion

Example

Syntax
Returns

Discussion

Example

See also

Use the first form of the method to determine the service list description. Use
the second form to specify the service list description.

See “Adding a Service List” on page 294.

ErrorHandler ()

Determines the name of user-specified service for error handler.

const char * ErrorHandl er() const;
voi d ErrorHandl er (const char*);

The first form of the method returns a pointer to a character string that contains
the name of user-specified service for error handler.

Use the first form of the method to determine the name of user-specified
service for error handler. Use the second form to specify the name of user-
specified service for error handler.

See “Adding a Service List” on page 294.

Get()

Retrieves a service list record from the database.
EcxServi ceLi st & Get (voi d);
A reference to this service list object.

You must specify the service list name in the object, by calling the Ser vi ce-
Li st Name() method, and specify the sequence number of the service in the
service list, by calling the SeqNun{) method, before calling this method.

See “Modifying a Service List” on page 295.

The Ser vi ceLi st Name() method on page 304. The SegNum() method on
page 303.

List()

Retrieves a list of service list records from the database.

300 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxServiceList Class Reference

Syntax EcxServi celi st& List(void);
Returns A reference to this service list object.

Discussion If you specify the service list's name in the object by calling the Ser vi ce-
Li st Name() method first, only the record matching with the specified name
will be retrieved. After calling the Li st () method, the member object contains
fields from the first record from the list.

Example See “Listing All Service Lists” on page 294.

See also The Servi ceLi st Nane() method on page 304.

ModByGroup()

Determines the group that last modified the record.
Syntax const char* MdByG oup() const;

Returns A pointer to a character string that contains the group.

ModByUser()

Determines the user that last modified the record.
Syntax const char* MdByUser () const;

Returns A pointer to a character string that contains the user name.

ModDt()

Determines the date the record was last modified.
Syntax const char* MdDt () const;

Returns A pointer to a character string that contains the date.

More ()

Determines whether more records are left in the list.

02 July 99 Chapter 18, The EcxServiceList Class 301

EcxServicelList Class Reference

Syntax

Returns

Discussion

Example

See also

Syntax

Returns

Discussion

Warning

Example

See also

Syntax

Parameters

302 Netscape ECXpert Site Administrator’s Handbook

| ong More(void);

A long integer that contains the number of records not yet accessed from the
list.

After calling the Li st () method and before calling the Next () method, the
Mor e() method returns the total number of records in the list. All records have
been accessed when the Mor e() method returns 0.

See “Listing All Service Lists” on page 294.
The Li st () method on page 300. The Next () method on page 302.

Next()

Associates the object with the next record in the list.
EcxServi ceLi st & Next (voi d);
A reference to this member object.

The Next () method sets the fields in the object to match those in the next
record in the list. The Next () method decrements the number of records not
yet accessed, which is returned by the Mor e() method.

Do not call the Next () method if the Mor e() method returns a value less
than 1; the results are unpredictable.

See “Listing All Service Lists” on page 294.
The Mor e() method on page 301.

ObjPerm()

Determines or specifies the record’s access permissions.

unsigned int CbjPerm() const;
voi d Obj Pern{const unsigned int perm ssions);

The Obj Per n() method has the following parameters:

per ni ssi ons An unsigned integer that specifies the access permissions.

02 July 99

02 July 99

Returns

Discussion

Example

Syntax

Returns

Discussion

Example

Syntax

Returns

Discussion

EcxServiceList Class Reference

The first form of the method returns an unsigned integer that contains the
permissions.

Use the first form of the method to determine the record’s access permissions.
Use the second form to specify the permissions. The Obj Per m() method does
not modify the database.

See “Adding a Service List” on page 294.

RcvrMBName ()

Determines or specifies the receiving member name.

const char * RcvrMBNane() const;
voi d Rcvr MBNanme (const char*);

The first form of the method returns a pointer to a character string that contains
the receiving member name.

Use the first form of the method to determine the receiving member name. Use
the second form to specify the receiving member name. Because it is the
foreign key, the receiving member name must exist in the database.

See “Listing All Service Lists” on page 294.

SegNum

Determines or specifies the sequence number of the service in the service list.

unsi gned int SegNun{) const;
voi d SeqNum (const unsigned int);

The first form of the method returns an unsigned integer that contains the
sequence number of the service in the service list.

Before you call the Add(), Change(), Del et e(), or Get () methods, you
must first specify the service’s sequence number within the service list in the
object by calling the SeqNum() method. Use the first form of the method to
determine the sequence number of the service in the service list. Use the

second form to specify the sequence number of the service in the service list.

Chapter 18, The EcxServiceList Class 303

EcxServicelList Class Reference

Example The Add() method on page 298. The Change() method on page 298. The
Del et e() method on page 299. The Get () method on page 300. The
Servi ceLi st Name() method on page 304.

ServiceListName ()

Determines or specifies the service list name.

Syntax const char * ServicelLi st Nane() const;
voi d ServiceLi st Name (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the service list name.

Discussion Before you call the Add(), Change(), Del et e(), or Get () methods, you
must first specify the service list name in the object by calling the Ser vi ce-
Li st Name() method. Use the first form of the method to determine the
service list name. Use the second form to specify the service list name.

Example The Add() method on page 298. The Change() method on page 298. The
Del et e() method on page 299. The Get () method on page 300. The
SegNun() method on page 303.

ServiceParams ()

Determines or specifies the service parameters.

Syntax const char * Servi ceParans() const;
voi d Servi ceParans (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the service parameters.

Discussion Use the first form of the method to determine the service list name. Use the
second form to specify the service parameters.

Example See “Listing All Service Lists” on page 294.

304 Netscape ECXpert Site Administrator’s Handbook 02 July 99

EcxServiceList Class Reference

SetLogin()

Allows the object to access the database.
Syntax EcxServi celi st & Set Logi n(EcxLogi n& | ogi n);
Parameters The Set Logi n() method has the following parameters:

| ogin A reference to a valid EcxLogi n object

Returns A reference to this service list object.

Discussion If you do not use the form of the constructor that accepts a login object, you
must call the Set Logi n() method before using this object.

Example See “Creating a Service List Object” on page 293.

See also The EcxServi ceLi st constructor on page 297. The EcxLogi n class on
page 127.

SndrMBName ()

Determines or specifies the sending member name.

Syntax const char * Sndr MBName() const;
voi d Sndr MBNanme (const char*);

Returns The first form of the method returns a pointer to a character string that contains
the sending member name.

Discussion Use the first form of the method to determine the sending member name. Use
the second form to specify the sending member name. Because it is the foreign
key, the sending member name must exist in the database.

Example See “Listing All Service Lists” on page 294.

SVRId ()

Determines or specifies the service ID.

Syntax unsigned int SVRId() const;

02 July 99 Chapter 18, The EcxServiceList Class 305

EcxServicelList Class Reference

Returns

Discussion

Example

Syntax

Returns

Discussion

Example

Syntax

Returns

Discussion

Example

void Svrld (const unsigned int);

The first form of the method returns an unsigned integer that contains the
service ID.

Use the first form of the method to determine the sequence number of the
service in the service list. Use the second form to specify the service ID.

See “Listing All Service Lists” on page 294.

SVRName ()

Determines or specifies the service name.

const char * SVRName() const;
voi d SVRNane(const char*);

The first form of the method returns a pointer to a character string that contains
the service name.

Use the first form of the method to determine the service name. Use the second
form to specify the service name.

See “Listing All Service Lists” on page 294.

TypeName ()

Determines or specifies the service file type name OR service data object type
name.

const char * TypeNane() const;
voi d TypeNane (const char*);

The first form of the method returns a pointer to a character string that contains
the service ID.

Use the first form of the method to determine the service ID. Use the second
form to specify the service ID.

See “Listing All Service Lists” on page 294.

306 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Chapter

Customizing Reports

his chapter describes how you can use the Actuate Report System to
create custom reports for use with ECXpert. This chapter contains the
following sections:

Overview

Starting a New Report
Building a Query

Laying Out a Report
Adding Report Parameters
Building Complex Queries
Displaying Groups of Data

Displaying Row-related Data

Chapter 19, Customizing Reports 307

Overview

Overview

Warning

The Actuate Report System is a very powerful database reporting tool. Actuate
comes with hundreds of pages of documentation. This chapter does not
attempt to cover much of the information provided by Actuate; rather, this
chapter provides just enough information to get started using Actuate with an
ECXpert database. You should find Actuate easier to use after reading this
chapter.

You will probably find that you need some knowledge of the SQL Select
statement if you want to do anything complicated. Although Actuate builds a
Select statement for you when you specify the fields you want to display in
your report, you still need to know how to interpret the Select statement.

You will also need to refer to the ECXpert database schema presented in
“ECXpert Database Schema” on page 347. The schema identifies the fields you
can use to create the report and the relationships between tables.

There are many strategies for creating reports and learning how to interpret the
data in the ECXpert database. The strategy shown in this chapter is to first
create a report that uses an individual table, then create a report that uses
multiple tables and groups data. If you follow this strategy, you will learn how
easy it is to use Actuate’s basic features. You will also become familiar with the
contents of the database tables that you are interested in. When you are ready
to create your own multiple-table reports, you will be familiar with both
Actuate and the data from which your report is prepared.

The ECXpert release 3.0 database schema on which you build your reports is
subject to change in future versions of the ECXpert System. You should
consider the potential reimplementation effort associated with an upgrade to
the database when deciding how much effort you want to invest creating
custom reports.

308 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Starting a New Report

Starting a New Report

02 July 99

You create reports with Actuate’s Developer Workbench. After you start the
Workbench, choose New from the File menu. You are prompted for the kind of
project. Choose New Report Wizard to create your report, as shown in

Figure 19.1.

Figure 19.1 Choosing the project type

Newrie ——H|

— Project Type

" Subclass a Design Cancel
" Based on Components
" Blank Repaort Design
™ Component Library

il

Help

Chapter 19, Customizing Reports 309

Starting a New Report

After you choose OK, the wizard specification box appears. You can fill in all
of the sections; however, you need not fill in any. You may find it convenient
to fill in Section 2, “Connection,” as shown in Figure 19.2. This section allows
you to specify the kind of database connection (Oracle), the default user name,
password, and host.

Note Filling in these connection parameters does not connect you to the database.
To ensure that your configuration is correct, you can run Oracle’s SQL*Plus or a
standard report provided with ECXpert using the connection parameters.

When you finish with the wizard specification, choose Finish.

Figure 19.2 New report wizard

Mew Report Wizard EHE
4 Sorting and Grouping | A Fields | B.Page Style | 7 Finizh
1 .About Wwizard 2.Connection | 3.Tables and Yiews

Select a databasze connection:

Oracle j

Set the properties of the connection:

fou muzt enter a walue for HostSting.

I DlIPath OChw32

[l HostString explorer_orclworld
] Pazsword s

I Uset ame |E|}<1

<Back Hest: | Finizh I Cancel Help

310 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Starting a New Report

When the New Report Wizard box closes, you are placed in the Design Editor,
as shown in Figure 19.3. This editor has two parts; the structure pane on the left
and the layout pane on the right. The structure pane shows all of the objects
created by the New Report Wizard. You do not need to work with them yet.
Just select one of them, such as NewReportApp, and then choose Data Source
from the View menu to start describing the SQL Select statement you want your
report to execute.

Figure 19.3 The design editor

02 July 99 Chapter 19, Customizing Reports 311

Building a Query

Building a Query

You can build a SQL Select statement to drive your report in the Query Editor.
If you are not logged into a database, Actuate prompts you for the user name
and password using the default values that you specified in the New Report
Wizard, as shown in Figure 19.4. You can change the values if you want. If you
want to change the host, you must change the Connection object in the
structure pane; see Figure 19.24 on page 332. Figure 19.4 shows the login
dialog.

Figure 19.4 Login dialog for Oracle

Databaze Login - OracleConnecti... [E3 |

|zerM ame:

Pazaward: I"

Q. I Cancel | Help

312 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Building a Query

After you log in, the Query Editor appears, as shown in Figure 19.5. It consists
of a pane on top for visually representing data and a tab-selected pane on the
bottom for entering and viewing the SQL statement specification. A database
browsing window is also available for selecting tables.

Figure 19.5 The query editor

=
e Eea
1l namwrn
B @ CEEFLATER
(il RO
=@ o
(ol PR
(il rocEEnTYMD
(i DTSERTES
{8 reranlon
L R AR
L B R
1l WIGsreEY
(i HIGSERERTT DS
Y R
o
i v
| EEE
L wreiRIfasdtE
1 Rl i
|\ PR
£ Rl iiad
|\ @ AR
Ll mEiD
R
vl S-EDLEmA]
=1 Rt aid
(il TRl MG
- "o
= R el A TR
1l FrRRE
@ H rrHro-
L TREEERE R

&
L]
E
IT
£
[.__.

02 July 99 Chapter 19, Customizing Reports 313

Building a Query

You select the tables you want to use from the database browsing window and
drag them into the upper pane. In this part of the example, only
MBADDRESSES is used, as shown in Figure 19.6. Dragging a table into the
upper pane modifies the From clause in the SQL-tab of the lower pane.

Figure 19.6 Dragging tables to the visual pane

=
w -l s
® B SAnRGE:
-l CERTTYPERD
= o
& OOCEEVERTY
® B DT RE
& B oresssass
- EvENTLN
%l GRPSONDHTY
@ GFFEEvERTmEY
&0 wnoamr
&l WTREVFRID A
- FEvEARY
Vil 401 | ok | Cortion | ey | Saceg By | oo 5L | ::w
= B e
- TR TS
= M ranreErEHEY
B PleEn
m Il oo
= Wl e
- Paan
= Bl e
B@ oHiLERT
= W e
&= B Mmoo
- fAehod
& B mooomorsis
- TR
&H manoia
- TREEERTY

RO WIADDAC R5E 5

314 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Building a Query

After you drag the tables to the upper pane, select the Columns tab from the
lower pane. This allows you to drag columns from the table in the upper pane
and drop them under Column Name in the lower pane. You can drag and drop
the asterisk (*) if you want to quickly select all columns in the table. Figure 19.7
shows the Query Editor after MBANAME, MBAQUAL, and MBAQUALID have
been selected.

Figure 19.7 Selecting columns

=y

e M B
= | rcesn
s CERTeaATES
= CCRTTYPERm
w40 (A
tgm l pOCsCeTRTY
& DISESTRT MDY
5 DTEmeLLE
&0 rvEunnG
& sy
|8 CAPEFETETHDY
Ll mresEvERDY
| B T RSEWE RN
L rEvFY

ki e Codavs | Concibiors| O By | Qs by | Hivng | 320 | ::Iﬁfn—uml
Ll

“"__- ot & B uidEnes
j'l";:mrm:-.w Sarg | wS Rt
Tt [RESEE & AL Sang ® B reRTHERS RS
R R S . e L 1 [s i FrCsR
@ reomes
4 PHGRUF

(= maTo

& [peate
vl SCHEDLLDWT
B Erams
&0 TreoD
®E T

t il TRRD DO ALY
| | TrRGRILF
L e CHG

= B TRECEVERITY

02 July 99 Chapter 19, Customizing Reports 315

Building a Query

After you have selected your tables from the database browser window and
your columns from the upper pane, you can refine your SQL statement by
selecting tabs in the lower pane and making further specifications.

Figure 19.8 shows the lower pane after selecting the OrderBy tab. You can use
the pane to specify the Order By clause in your Select statement. In this
example, the Select statement is ordered by the MBANAME column.

Figure 19.8 Specifying the Order By clause

Fubdar Jome | Cobmrn | Corditorn Drser By | Groap e Heg] 500 |
Divchan Hp fac Hradabds Colemra

MEDDEESSES MERL Lk,
WEADFETSES MBS LSUID

RSTTI I REES MRl

When you are finished, you can choose the SQL tab to view the resulting Select
statement. Figure 19.9 shows the Select statement that is used in this example.

Figure 19.9 A SQL Select statement

Tabi Jum | Cokewn | Corsiions | Goder i | GemanB| Haig (0L

SELECT WELAD DRE S5 S MEANAWE, WEAD DAE 555 5 3BT, MBADDRESSE 5. MRS D j
FRO WEISDDRESEER

DRI B Y WELATICTHE 558 5 R A

1l | _lJﬂ

At this point, the Select statement used in the first report has been created.
Close the Query Editor to return to the Design Editor.

316 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Laying Out a Report

Laying Out a Report

You use the Design Editor to lay out your report. The following sections show
you how to

= create frames for the data you want to display
= set up fields in the frames to display the data
« add headers and footers to your report

Along the way, you will learn how to run the report and view the appearance
of your layout.

Creating Frames

A report is divided into various sections. Initially, a report contains the
following sections:

= Report:PageHeader for items you want to appear at the top of each page

= Report:Before for items you want to appear only on the first page

= Report:Content for the main content of your report

= Report:After for items you want to appear on the last page

= Report:PageFooter for items you want to appear at the bottom of each page
= Report:Subpage for items you want to appear as a section within a page

Before you can display anything in a report section, you must create a frame
and drag it into the section. To create a frame, select the structure tool (third
icon from the top) from the left of the structure pane. A structure palette
appears. Select and drag a frame structure (fifth icon from the right) from the
palette to either the box to the left of the section name in the layout pane or to
the corresponding object in the structure pane.

02 July 99 Chapter 19, Customizing Reports 317

Laying Out a Report

Figure 19.10 shows the structure palette and the Class Name prompt that
appears after dropping the form in the appropriate place. Each object is
identified by its name; typically, you can accept the default. A discussion of the
use of subclasses is beyond the scope of this chapter.

Figure 19.10 Creating a frame

318 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Laying Out a Report

Figure 19.11 shows the frame in the layout pane. Notice that the frame also
appears in the structure pane. Everything you place in the layout pane also
appears in the structure pane. For any given operation, you can decide which
pane is easier to work from.

Figure 19.11 A display frame

EMr i
|T = [T Mgty
El i | Corverd - Firpest
W Cormscnon - DowceCowrs
ﬁ = [vetrmm (asimne

i R T T T o o o B e e o e T T B e B I o T B IR I S

=] IS ESSSSSSSEEESESEEEEEEEEEEIEEEENEEEESEESEEEEEEEEEEEEEN|
L T L i e O

i et - Pt Tl
Fie [mrii Pagotourpn
T Caraans -Diia?

02 July

After you create a frame, you can add the items you want to display.

Displaying Data

You can display data in controls. There are several ways to create controls. One
way is to use the Field List that Actuate creates when you build your query. To
display the Field List, select Field List from the View menu. This menu option

toggles whether or not to display the list. You can select one of the fields you
specified in your SQL Select statement and drag it onto the frame.

99 Chapter 19, Customizing Reports 319

Laying Out a Report

Figure 19.12 shows the Field List and the Class Name prompt that appears after
selecting MBADDRESSES.MBANAME from the Field List and dropping it into
the frame. After you choose a class name, the control is created in the frame.

Figure 19.12 Using the field list

O
=

EN il

- ﬂu—-ﬂ-.-a"

[T - Pt
B oo, - Duschl arai
[Dot o
] Comracian S T T I A A O

D DaloFim (Lo I T O O

0] Pagattaada e e e e e e e
IF| Ewiars EE SIS NSNS NSNS NN NN NN N NN

- || N I A O A G O O W
I Conta |
gl !
| Pagalosim
| by
- !I:IF"?"" i - Pagalm
5[] Pagediops - Page
i Lomsberi - Tl
I Coar - Rl s
B Comiori - Bagpth st
[5] Comamr - Dl

After you create a control, you can double-click on it to display its Component
Editor. The editor shows all the properties of the component.

Note A Component Editor displays the properties and other attributes of any object,
not just controls. Other sections in this chapter show uses of a Component
Editor for other kinds of objects.

Figure 19.13 shows the Component Editor for the control. You specify the data
to display in the ValueExp property; in this case, it is
[MBADDRESSES.MBANAME]. The brackets identify the contents of the property
as a column name. The SampleValue property displays a place holder value
that appears in the layout pane; in this case, it is “A Member Name,” which
appears in the field in the layout pane after you select Apply from the
Component Editor. You can change other properties, such as the font charac-
teristics and text-placement. You can also change the size and position of the
control; however, you may find it easier to do this by selecting the control and
sizing or moving it within the frame.

320 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Laying Out a Report

Note You can resize a frame in the same way you resize a control; either by
changing the size and position in the frame’s Component Editor or by selecting
and resizing the frame in the layout pane.

Figure 19.13 The component editor

[Comberi:. Sinpori |
lla Comirt - Fugall b

[5] Comerit it

T T

[P T

02 July 99 Chapter 19, Customizing Reports 321

Laying Out a Report

Another way to create a control is to select the control tool (fifth icon from the
top) from the left of the structure pane. A Control palette appears. You can
select and drag the appropriate kind of control to the frame. Figure 19.14
shows the Control palette and the Class Name prompt after a text control has
been selected.

Figure 19.14 Creating a display field

(B[4 fem Brums ook Obws Wi e =
W = FR] Wamlagamaoy
EI —_-I'u-H-I:q-'

W Cowwcmn . Duschel s
’E = i - O s
T]

7] Correcten

e [l - Dt e

7| Pozrinais
@ | Eafms
M Conipri: . SEAICHESE.
| éha
| Popcfrnin
| Sikrags
S} Paieint -Pagsina
7] Pugatipls - Page
B Ot - Flie
[Lo e |
B Cortdar - Fagabisbs
[5 Comtews: Dot

When you create a control using the palette, Actuate prompts you for the value
expression. If you want to add static text, you can enter it here within double
quotes (“My static text”). You can also choose items from the Field List by
selecting the down-arrow icon.

You can create complex expressions, including a combination of text, column
names, and functions. To create such an expression, click the ellipses (...) to
the right of the down-arrow icon. The Expression Builder appears.

322 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Laying Out a Report

Figure 19.15 shows the Expression Builder after inserting two columns that are
concatenated with an intervening colon (“ : “). If you decide to change your
expression later, you can open the control’s Component Editor and click the
ellipses (...) to the right of the ValExp property; it's the same property you are
prompted for here.

Figure 19.15 Using the expression builder

02 July 99 Chapter 19, Customizing Reports 323

Laying Out a Report

Running a Report

After you have a frame that displays at least one column value from the
database, you can run your report. If you want the report to display without
data, you must provide additional code that is beyond the scope of this chapter.

To run a report, you must build the report, execute it, and then view the
resulting output. You can perform these steps individually from the Report
menu, or you can select the Build/Run/View option to perform them all at
once. Figure 19.16 shows the Report menu.

Figure 19.16 Building, running, and viewing a report

When you run a report, a Requester dialog appears to request values of param-
eters. Figure 19.17 shows the Requestor dialog. In general, you can ignore the
Output Parameters requested by Actuate. For information about adding your
own parameters, see “Adding Report Parameters” on page 330.

Figure 19.17 Requester dialog

i\ Requester - MemberAddressList rop

|E| Dutput Parameters * I

[efaut DK Cancel

324 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Laying Out a Report

After you respond with OK to the Requester dialog, the report runs.
Figure 19.18 shows the report created thus far.

Along with one line for each row of data, the report shows a generic report
title, which is one of the defaults provided by the New Report Wizard. The
report also contains page numbers and today’s date at the bottom of each page;
these are not shown in the figure.

Figure 19.18 The first report

Report Title

HORE ECX

HONE GE=

HOHE : coa-test]

27 4EITHE

EM : scx-imrt] @actracosp com
HEHE - pew-tea

LI AT

EM oo i EyTictnin g £ oie
HOWE Sp-locd

HOHE kel

12 41511n

ERA - kmomi | @arsc ey com
HOME |l

12 15222333

EM. kmmdi@arkacarp com
HONHE - il
12-M&INn

HCHE w_ec?
12y

EB . e en T i o ot

02 July 99 Chapter 19, Customizing Reports 325

Laying Out a Report

Adding Headers and Footers

When you use the New Report Wizard to create a report, Actuate creates
several objects for you:

a Pagelist, which is the container for a page layout

a Page, which specifies the page size

a Flow, which defines the printable area of the page

a text Label for the report title
= text Controls for the page number and the date

You can change the properties of any of these objects in their respective
Component Editors; however, these objects are not visible in the layout pane.
For example, you can adjust the size property of the flow to effectively change
the margins on the page.

326 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Laying Out a Report

Figure 19.19 shows the page list-related objects and the flow’s Component
Editor.

Figure 19.19 Specifying page flow

ﬁ" - ﬂhﬂq-’.l.-.
EI 5) Cioriasi . M apari
W Covrasctior, - Duschl s
= I Lot Cwiomeen
] Comacian
B DatoFiim - [LakaFices
r’ Pigtidada
| Rsias
- Corigrd - F s
il Coabe - MOADDRESS
Mg Corsipri - [
[l
[Paseimiss
] Sebpam
= [Pagst i - Pagslia
57 Pagrliin -Page
i [T T
[Crmiers Sy i
W3 Comany - 7 gl b

[F Cowsr - uaimi

EMrE

. Flos Messadddaa i el - [ompsnee | b

S | ok | Wi | e |

1 Eachoponrad rless

B e

A e LY
| Eiirg ol b ddsiakia k. Cangorer: P Manisvhcibicd.at ol

! [t bkt

i Hab Tt

[Tk

o i

[1]
=L
Fagh
m

1
! Lt e

& Fasrw

3l

8 Fo vl g

15 mmicietduia

- Sy

| S i

3 & b T

You can simply modify each page list-object to specify the header and footer
for your report; however, you will probably find it easier to create frames and
use the layout pane to position them. You can delete an unneeded object by
selecting it in either the structure or layout panes and pressing the Delete key.

This example deletes the report title control and replaces it with a frame and
related controls in the Report:Before section. Figure 19.20 shows the new
report control’'s Component Editor, in which the font as been changed to 24-
point bold and the text has been placed in the center of the control.

02 July 99

Chapter 19, Customizing Reports 327

Laying Out a Report

Figure 19.20 Adding a report title

BT T
=|:E'-"ﬁ-1--ﬂ"
955 Corvmnd - Fapes
T Corvesatica - Dl
= Dewtreem Listol memn

lll I LAl
B T P S e, S e T e E TR T

| Cormacice TV IO | Coke
S g S N EEEEEEEEEEEEEEEE Faore
" i} i1
=i l-:ﬂll-ﬂ'! wal o
J7 Cmired
L i T e
b [T T -
b Criord Voot (R T] L e S
B et - TaeiCarieall i e firo=s
=gl (il P I_-hil.-'r-l
fin Carkerd - MR S E P TTT T TP TTT foisis
By Dorvsd - Tl ardecd
I | i e
s
T Pl e 4 Frmien
T b [B gt bl g el
=5 Pagalan - Fageln [T
S} Faetinie Fuie ettt
) ‘Larvend - Fios | ot Lot
B L
e - P il o
FE] v D
| el gy
CEE]
i[n 3
A Elem
Pl e
P
I e bFCaria
LT f
| e T il
"o L
=
. | | Chiss }r
5|

The Report:Before section only displays on the first page of the report. You
must provide a frame and related controls in the Report:PageHeader section if
you want to have a heading on each page. You can copy items from one frame

to another by holding the Control key while dragging the object.

To add a footer, you must provide a frame and related controls in the

Report:PageFooter section. One way to set up controls in this section, after you
create the frame, is to drag the page number and date controls from the page to

the frame.

By default, the page footer does not appear on the first page of the report. To
change this situation, you must open the Content - Report object's Component

Editor and change the Page property’s ShowFooterOnLast field to True.

328 Netscape ECXpert Site Administrator’s Handbook

02 July 99

Laying Out a Report

Figure 19.21 shows the layout pane after adding the Report:Before and
Report:PageFooter sections. It also shows the Content - Report object’s
Component Editor after changing the Page property’s ShowFooterOnLast field.

Figure 19.21 Adding a page footer

= F] Hanl eporion
W Cowecion - [adelmres
= o e - e

¥ Cormrwotn

e Wl ECXpertMemberhiplist

i Contars - T

s Cosnaon - Tt ard - liiioo ?HHH’: SRR R
B teoy Freal
i Comtary - Taloay -
pil NTETICTAAEEENEEEEEEEEEN T

M Ciorsbpr - ¥l

B Conieey - Tl oarinels
Sl Corded - Fupme

M Combars - MEANDIETS I A T A A

B Cortsaw - Tioalrai 1

e " u- Rk =
O Pagefoas - Fanal

| Cabrmem

=T P - Pagalio
=[] Pagire -Pap
i Comteri . Mo

Mpabpoiior Faral
|u-rh_-|-|,-u|,‘. Tl il rme e
| [T p—
Usafipposior [Lesl mecs

Figure 19.22 shows the report after adding headers and footers. Note that the
footer appears right after the last data line. You can set the Page property’s
ContiguousPageFooter field to False if you want the page footer to appear at
the bottom of the last page.

02 July 99 Chapter 19, Customizing Reports 329

Adding Report Parameters

Figure 19.22 A report with headers and footers

Eﬂ- Ed o Grarh [ba liwiee Hel Fl
[
~ =3
L
g
ECX pert Membership List
Slemdier Soamie Tradiig Address
£ ECX HOME : B2X
ZEIS HHE : EIS
el] HOHE | -1t
et | LT &GEITTIIE
rrx-wt EM : erx-tesilBuctucomp com
wrx-bawil HIOHE : wcx-teril
srx-tarid =X SIEHIIIT
s x-oaet] B - scx-tawid Suctus orp com
Ho-leeal HLUHE - Bp-leeal
e | HOHE : kel
ksreiti] 12 AISL11ET1
b] ERE - b T T e i
kel HOHE : kxersd
korral 12 . 4132
el ERl bmenidistas o o
tast] HOHE : taetl
[11-4] 12 ek
= scx? HOHT. ue_wex
e 15 : 1 FEFETTH
[BB oar_ecol A ERosp. Cod
Fugr T
_| (ipwrng mood -1 ipet Hopiarisss Loprols Hegosiostbmicdawriei e Hik

Adding Report Parameters

When running a report, the requester dialog appears to prompt for values of
parameters that control the report’s execution. You create a parameter by
selecting Parameters from the View menu, which causes the Parameter Editor to
appear. For each parameter, choose Add and fill in the attributes.

The parameter name must be a valid name for programming purposes; as you
will see, parameters are used in very simple code you must write. You must
provide a data type that represents the kind of data you want to use; for
example, String for alphanumeric data, Integer for whole numbers, and Double

330 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Adding Report Parameters

for decimal numbers. You can provide a group name to display several param-
eters under the same heading. You can also specify whether a value is

required, whether or not it will be displayed at all, and whether what the user
types will be displayed.

Note The Requester dialog displays groups and non-grouped parameters in alpha-
betical order and displays grouped parameters in alphabetical order within
each group. You can only control the placement of items in the Requester
dialog by naming them appropriately.

Figure 19.23 shows the Parameter Editor while adding the Passwd field to the
“Database Login:” group. A value is required and, because Hide Text is
checked, characters typed into the Requester dialog for this parameter will be
changed to asterisks (*) when the report is invoked. (Two other parameters

created in this example are not shown; they are the LoginName and Server
parameters.)

Figure 19.23 Adding a parameter

EEr T
LJJ |1 Vshzar P arebieii I
T | | 2w | | |
s Dot - Tl st ump |
7 e Fl ecifdonge
8T Pl ol - T
7 o
-.]:‘HIH.-- wl
=10 Pugmnss - Fugs
i [mrderst - Fiom
02 July 99

Chapter 19, Customizing Reports 331

Adding Report Parameters

After you create a parameter, you can use it to set the value of a property. The
Passwd, LoginName, and Server parameters in this example are used to set
properties of the Connection object, which is shown in Figure 19.24.

Figure 19.24 The connection component editor

One of the powerful features of Actuate is the ability to customize its operation
by overriding various methods. You must override the Connection object’s
Connect () method, for example, to set its properties before Actuate estab-
lishes the connection with the database.

332 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Adding Report Parameters

Figure 19.25 shows how to set the properties. The parameter values are
assigned to the properties. The properties are specified on the left-hand side of

the assignment.

Figure 19.25 Setting properties from parameters

EE T

|T =) Mt
= g Loierd Hirpos

S rye——cpr
I Cormecior

R

w2 Beimr ol

=g Condat - Furs
By (e - fa[

Brm. I oridand . el

o=k Dol e - O @bl

Biw, Caridand - TaeCmndsol]
o Dt -7 deutl tieciil

B Cordend - Taeilomal
B (oo - T il il
Bz Lo - 1 wslmnisoll

Fromin ok | vmien | D |

e

= O R R e

& inciel o LT
B caraci =i
_':tr Flimisljim Losiessl | 5 ks P | S8y =
CdeSOL © mACpT ot)
© lnsert pour oode berw
Ered Faracticn
s o
L o - —-no o oo e |
[Fdrgblokie sledetitieed ki Comparens Qo ravecir| Padestadeael e~ 7m0

Note

02 July 99

In general, you can assign value to a property in any object programmatically,
allowing the property to be set or changed when the report executes. A
description of the execution sequence of Actuate methods and when to
override specific methods is beyond the scope of this chapter.

Chapter 19, Customizing Reports 333

Building Complex Queries

Figure 19.26 shows the Requester dialog after the newly added parameter
values have been filled in.

Figure 19.26 Entering parameter values

s Requester - MemberAddressList.rop

[=) Database Login:

[Lagin arme = ECx1
I Passwd =
[l Server ® explorer_orcl world |

[#) Output Parameters

Defaultl ak. I Eancell

Building Complex Queries

The section “Building a Query” on page 312 describes how to build a query in
the Query Editor. This section shows how you can join tables in the Query
Editor and how you can create dynamic queries in which the Where clause of a
select statement is created when the report executes.

Joining Tables

To join tables, start the Query Editor and choose the column name you want to
join in one table. Drag the name to the column you want joined in the other
table. This action creates a join based on equality, which specifies selection
where ever the column values for the rows are the same.

334 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Building Complex Queries

The action of dragging from one column to another causes a line to appear
between the columns with a join icon in the middle. You can double-click the
icon to display the join’s Property Editor. The Property Editor allows you to
specify other relationships between the tables. It also allows you to specify
outer joins.

Figure 19.27 shows the MBADDRESSES table joined with the PARTNERSHIPS
table on three fields. The Property Editor for the fist join is also shown. The
SQL tab in the lower pane shows the resulting Where clause.

Figure 19.27 Joining tables

[F o e e men tamch e e

0
=]
e i o 1] Tut H]
BlEDik D = | FHEHC R
T Rspde gy HEEIEFL M- PR TS LT
I WRADINSE G FE MRRMANT (61T R PAATNE FGHIPS] TR [MDA DL
R A RER 21 T]
™ PEATREREHIFE PHEHD RSERSSE ({TER MRl AL T MECTRE
PHEHIFCEATTPE
PR DACERITYE
FAEECIRITY
PHOTEC
oA
Fras(iiRR] P
Fi=lDErSER
FHESOO DT

-]

Th#ﬂ|tn-|c.-u—_]u—lg-|_n:n|uhq 8 1

EELECT WHADDAEEEES WBAMAWE. MBSIDRESSEE MESIML MEDCAETIE R MELGUALID, PAATHERSHIFE FRENDAKBNAWE
PAHTMIFISS 15 P8 S0 RO, PARTMTFRN RS, PR RO I, PARTREFEER IS PRH CrRRarsl i,
PARTMERISHES PNHOTSRUAL, PFAHTHEHSHIFS. PFHRCVROUALE,. PFRRTHEHSHIS. PHACTIVE

FRadeA WHADDAEBEES, PUATHE FFEHIFE

AHEEIE BHADOHE S S AR E = PATLTHNE FIEHIFYS SMEMOHMEMNAR E SR B EADDTHE SSES HHEAOUM =
PARTMERESH S P EMD el AMD MERDDA EESER MBREIELIL © PRATHE REHIFE. PHERDRAOUALD

OHROE R T WNADTAL 555 W AR

02 July 99

In some cases it is not possible to describe the Where clause visually. For
example, you cannot describe visually the Where clause in the following
statement, which is used by the Partnership example being built here:

Figure 19.28 A complex Where clause

SELECT
VBADDRESSES. MBANAME,
PARTNERSHI PS. PNSNDRVBNAME, PARTNERSHI PS. PNSNDRQUAL,
PARTNERSHI PS. PNSNDRQUALI D, PARTNERSHI PS. PNRCVRVBNANE,
PARTNERSHI PS. PNRCVRQUAL, PARTNERSHI PS. PNRCVRQUALI D
FROM

Chapter 19, Customizing Reports 335

Building Complex Queries

VBADDRESSES MBADDRESSES,
PARTNERSHI PS PARTNERSHI PS
VHERE
(VBADDRESSES. MBANAME = PARTNERSHI PS. PNSNDRVBNAMVE AND
MBADDRESSES. MBAQUAL = PARTNERSHI PS. PNSNDRQUAL AND
MBADDRESSES. MBAQUALI D = PARTNERSHI PS. PNSNDRQUALI D) OR
(VBADDRESSES. MBANAME = PARTNERSHI PS. PNRCVRVBNAME AND
MBADDRESSES. MBAQUAL = PARTNERSHI PS. PNRCVRQUAL AND
MBADDRESSES. MBAQUALI D = PARTNERSHI PS. PNRCVRQUALI D)
ORDER BY
MBADDRESSES. MBANAME ASC

In cases such as this one, you can enter the Where clause in the lower part of
the lower pane after you choose the Conditions tab. Enter the Where clause
exactly as you want it to appear, without the WHERE keyword. Figure 19.29
shows the Where clause under the Conditions tab.

Figure 19.29 Entering a Where clause in the Query Editor

[F i i B g ek i

B rantucnemes | -
. -
STy il
(5 LY CTENS PSR HEREMHE
L5 e LL i [bt e T
L RIPE A PR R
et D P S Fnf e
b LI DT ILEE =S8 Tat el =1 =l

Tl s || Coawrs: U-illn|nn--| G By | Maeng] B |
Uy Mamn Ugprs P amreien Al Her

| WBADDFESSEE WEANARE = PRRTHEREHIFS, PMEN D RMEMEWE aR0D -1
WITATI AT S5 TS WAL L, = PARTRIT FLSHIPS PRERTATLAL ARD
AL 5 S WS L AL B = P TRE FISHIPS PRSRIGHOUALID | 09

| WBADDREASEE MEAMAME = PRRTHEREHIFS. P ACVRREIHAME D

WEANDRESSEE WBAT UL ~ PARTMEREHIFE, PHRCVADUM AN

WAL R S5 5 WTA T LI I = B TR FES IS FPREHCVRIUL I |

336 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Building Complex Queries

Figure 19.30 shows the resulting Select statement in the lower pane after
choosing the SQL tab.

Figure 19.30 The revised Select statement

[id ve= Rewd Seach e s T
e - =l
N T T — -
=

[P TTE D

s [kl Ll L]

keliin i PrEUS Ol

A DO PHELDADLAL D

A] FERLF = R H A -

T SRR =l

by o | Emrs | Errsbos | Do | G B | o [20L |

| ¥

SELECT WEADNESES ES MEBAHAE , IWHTMNEFISHIPS SNSMONRERAHE, PR THELSHIPS. PHEHIHSTUAL,
PHFITRE RS HIFE PRERDAOUALID. PRRTHEREHIPE. PHRCVFIMBHAVE., PARTHNEREHFE FRnCYRGLAL
FRATRE G HIPE FRBCVADLID. PAATHE RIHIPE PRACTIVE

Fie MBAIESEES PAIITMENSHES

WHERE | WHADIMAE 25 S MOARAKE = PAH TRE RS 1PE PR RO W DRAME A0 WHANOREZRES, WlaIal -
FEITRE RS HIPS PRERDEO AL ANIE TSN THRE 5 S TS LA I = BN TRIE FSHIPS PR RDE DURLID) 06)|
MEALLFESEES MESHARE = B1TTHEHGHIS S ICW SR AR R BATRIHIE S5 E 5 ML =

FEFTRE RE HIPE PR CYRGALRL 48D WHADDREEEE 3 MBACRIRLIT = PRATHERS HIPE PHRCWADUALID |

DR R BT WIERATT IR 5 5 S WA A

Creating Dynamic Queries

The following example shows an alternative way of specifying the Where
clause of a Select statement that you can use to change the query when the
report executes. This example dynamically modifies the Where clause shown in
Figure 19.27 so that it performs the correct query for the Partnership, as shown
in Figure 19.28. This Where clause in this example does not actually need to be
dynamic because it does not require any parameters or control structures (such
as “if then, else, end if"); however, this section shows how to set up the clause
in a dynamic way.

To create a dynamic Where clause, you must override the DataStream’s object’s
Start () method. The DataSteam object contains several variables, one of
which is WhereClause. You set the WhereClause variable to contain the clause
you want to use when you execute the report.

02 July 99 Chapter 19, Customizing Reports 337

Displaying Groups of Data

Figure 19.31 shows the WhereClause variable being set so that it modifies the

clause in Figure 19.27 to become the one in Figure 19.28.

Figure 19.31 Specifying the Where clause at runtime

&l

T Comwcian - Dusisl s
- O T
7| Cowrasc i
£ DatFiim - [LakFiom
= | Fagetisads - Funs!
B vt - Toat i <]

Emr A
r: —ﬂﬂ.—rﬂ-.-'.i..

o [Coriesi . P apert

Propwi Matod: | vamatier | D |

B B Bt - FoweaZ

B Conder - i

i Condari - T e orimid

i Coriprt Tl
i Comar - Moo
Mg Cortd - Tl

B vty - A DR %

Mo " i . 'l i

[t | wma| €0 |t | oo |

Fam:t 1in
Flenrwl

P el lanss =

maEtl |
lagms = *|

wlail

08 | HBADDFEZTES HBAE

Forilmem

* b Tharelsums B "}
Wesrsl Laiie L “TRALDEESSES WEAOELL = PLETHERSHIFG PHECVEGNAL 4HT
Fhare” lapss = Wwacellauss & "IBADONETSET HEAQUALIOD » FRTTHERSEIES FERCVEOIALIT)~

AHE = PAFTRERTHLPFS PHECPFHBHAEE AHD °

= Sigpey Srave| |
[rmect your code bars

Displaying Groups of Data

Warning

338 Netscape ECXpert Site Administrator’s Handbook

Often, you want your report to group data in some meaningful way. This
example shows how to group partnerships by member—the member may be
either a sender or a receiver. Thus, if member A forms a partnership with
member B, the report displays the partnership in a group for member A as well
as a group for member B. The Select statement in Figure 19.28 handles the join
requirement. This section shows how to set up the report to display the
partnerships grouped by member.

To create a group, you select the Group icon (third icon from the left) from the
Structure palette and drag it to the Report:Content section.

Unpredictable (and erroneous) results occur if you drop the group object in a
Report section other than the Report:Content section.

02 July 99

Displaying Groups of Data

You must specify a column or variable for the Group section’s Key property. A
change in the value of the key causes a new group to appear in the report. If
you specify a variable for the key, it must be defined in the DataRow object.
See “Displaying Row-related Data” on page 342 for more information.

Figure 19.32 shows a the group section’s Component Editor in which the key is
the member name.

Figure 19.32 Specifying a group key

ET e rIE|

] | [o e e
2l Fagemke - s
= ﬁ [| T e Ll I o I S S A B B S B SO B B e R B

-_W:
[Crescior. T e e o e e e
7] Fimbiis NN AN
il e
7] Corasa
1™
[T Fatober
) 5 ki
[ase

HEHEY Pagel mobn - Framal
[T Gk

- Pl - Fugelo :

S remtae-ram L LD L L LD LR

L Fim =g L
iy et UL LU L L L L L] Ty L) [FREEE) B |

v [Foatre sk e | | sspeweerd F ol =mE

Within the group, you add frames and controls within the various sections:
= Group:Before contains items to display when the key value changes.
= Group:Content contains items to display as detail lines within the group.

= Group:After contains items to display after the key value has changed but
before the next Group:Before section appears in the report.

02 July 99 Chapter 19, Customizing Reports 339

Displaying Groups of Data

Figure 19.33 shows a report that displays the member name in the
Group:Before section, a partnership row consisting of two lines (one for the
sender, the other for the receiver) in the Group:Content section, and a blank
line in the Group:After section.

Figure 19.33 Reporting grouped data

qﬂm
.I'-nw Pt

I_.Tf'-m Dot Rlurnbsar, ||| I:::IIIIIIII :ﬁm“““
i Do Dol s i ll“llllll.l [] 1]
JESE) S p— EE] ¥
8 b o T L,
ia..l’.l'ﬂlll.'-'lm R R R
li_!l':""'”' rrer T
|] Pugetmsde
= B o ml IIIIIIIIIIII
L iy it LR WS B 5D A ol .L- | SRRSO TSR
- R =
— g [t - Tl e
b Lo - Tl el
Ra Corisst - PARTHDES HPSPH SHDAMEH AL Tos
— e Dot - PERTHERS HIPSPH RO Pl HdsE Lo
—fiw Candard - Tt mriboll
Ha, Dot - Tasarmedl
L 13 Corkert PRRTHESS HPH A TTo i

340 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Displaying Groups of Data

Figure 19.34 shows the output of this report.

Figure 19.34 Output from the grouped data

ECXpert Partnership Details

MMembher Partner Trading Address Active
ecx-testl
Sender: ecx-test] ZZ 4085423277 1
Eeceiver: ecx-test2 ZZ 4085423277
ecx-test2
Sender: ecx-test] ZZ 4085423277 1
Eecewer: ecx-test2 ZZ 4085423277
kmeml
Sender testl 124151111111 1
Eecewer: kmem1 124151111111
Zender: lemem1 125107777777 1
Eeceiver: uz_ecxE/ 125107777777
kmem2
Sender: testl 124152222222 1
Eeceiver: kmem2 12:4152222222
Sender testl HONE ; kmem?2 1

02 July 99 Chapter 19, Customizing Reports 341

Displaying Row-related Data

Displaying Row-related Data

The report shown in Figure 19.34 displays a 1 if the partnership is active
because it simply displays the integer value stored in the database that repre-
sents an active partnership. This section shows how you can create a variable
and set its value based on a value in the row. In this example, the variable is
created to display a database value in a more meaningful way.

The DataRow object contains a per-instance variable for each column that you
specified in your Select statement. These variables are named by concatenating
the table name, an underscore character (_), and the column name; for
example, PARTNERSHIPS PNACTIVE is the variable associated with the
PNACTIVE column of the PARTNERSHIPS table.

You can add other variables to display additional row-related data. To create a
variable, open the DataRow object’s Component Editor and choose the
Variables tab. Choose New to add a new variable.

A Class Variable prompt appears. In it you specify the variable name, the data
type, the kind of variable, and its visibility. (Visibility is beyond the scope of
this chapter; choose the default.) For efficiency, specify the type if you know it.
If you want Actuate to handle type conversion, specify Variant for the data
type. You should specify Instance for a row-related variable; this kind of
variable exists for the duration of the row.

342 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Displaying Row-related Data

Figure 19.35 shows the Class Variable prompt in which the ActiveFlag variable

is being created.

Figure 19.35 Adding a class variable

+ DataRow [Partnership_rod) - Component E ditor

F'ropertiesl Methods Variables |Elass I

1 B3

I MBADDRESSES_MBANAME String
CIMEADDRESSES_MBAGQUAL String
I MBADDRESSES_MBAQUALID String

[PARTHERSHIPS PRACTIVE
m Class Variable

lntaner

CIPARTNEF Mame: |ActiveFlad

CIPARTMEF

™ Euternally Defined Data Type

€ Static [shared by 2l objects)

j Cancel |
Help |

| [

m Type: IString
CIPARTMEF
m Storage: &+ |nstance [per object]
O Rowhumt
Wisibilty: | Public
(L |

MNew | Deletel Infa | Filter | Close |

After you create a variable, you can use it with a column from the database.
You specify the relationship between your variable and a column variable by
overriding the DataRow object’'s OnRead() method.

Chapter 19, Customizing Reports 343

Displaying Row-related Data

Figure 19.36 shows an if-then-else-endif construct that sets ActiveFlag based on
the value of the PARTNERSHIPS_PNACTIVE variable.

Figure 19.36 Setting a variable using a row’s column value

G b Dl |
e] v a1 al &1 g

g, ol s | B | e e DM
+ s ssPiana i1 F gy il b rege |k Salle

DuFmsd|

i EIFTI'EHEH[F’E.MTH‘E = f them
Activafleg =

mlas
r:t:'l-lll'l.l.p BT

&-E-: = o T
n.-r:mn-nnd-hn-
Ered Gl

After you define a variable in the DataRow object, you can use it in the same
way as you use a database column. Figure 19.37 shows how to select a row-
related variable to display in a text control.

Figure 19.37 Displaying a row-based variable

TELLIT T T 11 ke
e B o
AELENEEEETEERTNEEEEE.

344 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Displaying Row-related Data

Figure 19.38 shows the report that displays this variable.

Figure 19.38 The second report

Member Partner Trading Address Active
ecx-testl
Sender: ecx-test] L2 ANRS423277 T
Eecerver: ecx-test2 ZZ 4085423277
ecx-testl
Sender: ecx-test] ZZ 4085423277 T
Fecerver gox-tests ZZ - ANB5423277
kmeml
Sender: testl 124151111111 T
Eecerver: kmem1 12:4151111111
Sender: kmem1 12 5107777777 T
Recerver: ux_ecxl 125107777777
kmem2
Sender: test] 12 .4152222222 T

ECXpert Partnership Details

02 July 99

Chapter 19, Customizing Reports 345

Displaying Row-related Data

346 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Appendix

ECXpert Database Schema

his appendix details the table structure of the database underlying the
ECXpert System.

The following topics are presented:

Cautions in Using the Database Schema
Extending Table and Rollback Segment Space
Values of AckState

Alphabetical Listing of Tables

Schema Overview

System-wide Tables

Membership-related Tables
Partnership-related Tables

Certificate-related Tables

Tracking-related Tables

Appendix A, ECXpert Database Schema 347

Cautions in Using the Database Schema

Cautions in Using the Database Schema

The database schema for Version 3.0 of the ECXpert System is subject to
change in future versions of ECXpert. You should only use the APl described in
this manual to access the database outside of ECXpert. If you rely on the
schema, you should consider the potential reimplementation effort that you
could incur as the result of an upgrade to the database.

Extending Table and Rollback Segment Space

Note

You can extend your tablespace size and rollback segment space by following
the steps below:

1. Log onto Solaris with your Oracle account. For example:

login: oracle
password: oracle

2. Launch the Oracle Server Manager utility.

svrgrl
SVRMGR> connect systeni manager

The default password is manager ; yours may differ.

3. Enlarge the USERSand SYSTEMdefault tablespaces.

For example, if the user default tablespace is USERS and the system default
tablespace is SYSTEM

SVRMGR> al ter tabl espace USERS
add datafile "/export |/ appl/oracle/product/8.0.4 | dbs/usrdataECX20-2.dbf’ size 100M;

SVRMGR> alter tablespace SYSTEM
add datafile '/export/app/oracle/product/8.0.4/dbs/systECX20-2.dbf" size 50M;

In the dat af i | e command above, change “si ze 50M’ to reflect the table
space size you want to set. Netscape recommends you use the following
formula to estimate the tablespace size needed for ECXpert:

e 2.5kB * number of documents received daily * number of days retained

For example, if you expect to process five documents per day and retain
the document information for five days, you should set the table space size
to at least 2.5 kB * 5 (documents) * 5 (days retained) = 625kB.

348 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Note

Values of AckState

4. Enlarge the rollback segment size.

For the rollback segment size, estimate 1.5 - 2 times the largest tablespace.

For example, if the user default tablespace is USERS and the system default
tablespace is SYSTEM

SVRMGR> al ter tabl espace RBS

add datafile '/export/oracle/product/8.0.4 |/ dbs/usrdataRBWG2.dbf’ size 300M;
SVRMGR> alter tablespace RBS
add datafile '/export/oracle/product/8.0.4 / dbs/systRBWG5.dbf’ size 300M;

Values of AckState

02 July 99

The AckState column stores the acknowledgment status when Functional
Acknowledgments (FAs/997s) or CONTRL messages are requested. The column
appears in the Trkintchg (T1AckState), TrkGroup (TGAckState), and TrkDoc
(TDAckState) tables. The actual value of AckState is computed by adding
together the applicable combination of the following values:

Defined State Value
ASunknown 0
ASwaiting 1
ASok 2
ASerror 4
ASreject 6
ASpreject 16
ASsent 32
ASsendFailed 64
ASreconciled 128

To understand the usage of these values, we can break the above definitions
into three categories:

= basic state (Asunknown, ASwaiting)
= acknowledgment status (ASok, ASerror, ASreject, ASpreject)

< acknowledgment flavor (ASsent, ASsendFailed, ASreconciled)

Appendix A, ECXpert Database Schema 349

Values of AckState

Examples

Messages
Displayed

The acknowledgment status can be added to the acknowledgment flavor to get
a complete picture of a document record’s corresponding acknowledgment
state.

Let’s consider some scenarios and see how this would work.
Outbound EDI

In the case of outbound EDI, the map direction is Application to EDI or EDI to
EDI. After successful translation, Translate assigns ASwaiting to the document
record.

When the 997 or CONTRL is returned in response to this document, this is
parsed and the AckState of the gets a flavour of ASreconciled added to the state
extracted from the acknowledgment. Thus, if the trading partner rejects this
document for whatever reason, the AckState for this document would be ASrec-
onciled added to ASreject.

Inbound EDI

In this case, the map direction is EDI to application. FAgen generates the
acknowledgment and assigns an initial status to the document (ASok, ASreject,
etc.). When Gateway sends the acknowledgment out, the AckState of the
original document is updated with the ASsent or ASsendFailed flavor. Thus, if
we reject an inbound EDI document and Gateway succeeds in sending this out,
the AckState of this document would be ASsent added to ASreject.

Table A.1 lists the messages displayed in the Tracking tabs for various values of
AckState.

Table A.1 Messages displayed for various values of AckState

If AckState has...

ASwaiting only
added
(AckState =
ASwaiting)

And... Message Displayed is...
acknowledgment Waiting

Overdue Date >

current date

acknowledgment Overdue

Overdue Date <=
current date

350 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

Values of AckState

Table A.1 Messages displayed for various values of AckState (Continued)

If AckState has...

And...

Message Displayed is...

ASreconciled
added

ASok has been added
to AckState

Reconciled (OK)

ASerror has been
added to AckState

Reconciled (Error)

ASreject has been
added to AckState

Reconciled (Reject)

ASpreject has been
added to AckState

Reconciled (Partial) Reject

otherwise

Reconciled

ASsendFailed
added

ASok has been added
to AckState

Sent (OK)

ASerror has been
added to AckState

Sent (Error)

ASreject has been
added to AckState

Sent (Reject)

ASpreject has been
added to AckState

Sent (Partial) Reject

otherwise

Sent

ASsent added

ASok has been added
to AckState

Send Failed (OK)

ASerror has been
added to AckState

Send Failed (Error)

ASreject has been
added to AckState

Send Failed (Reject)

ASpreject has been
added to AckState

Send Failed (Partial) Reject

otherwise

Send Failed

Appendix A, ECXpert Database Schema 351

Alphabetical Listing of Tables

Table A.1 Messages displayed for various values of AckState (Continued)

If AckState has... And... Message Displayed is...

otherwise, if ASok has been added Generated (OK)
acknowledgment to AckState

Overdue Date >

current date ASerror has been Generated (Error)

added to AckState

ASreject has been Generated (Reject)
added to AckState

ASpreject has been Generated (Partial) Reject
added to AckState

otherwise, if ASok has been added Send-Overdue (OK)
acknowledgment to AckState

Overdue Date <=

ASerror has been Send-Overdue (Error)
current date

added to AckState

ASreject has been Send-Overdue (Reject)
added to AckState

ASpreject has been Send-Overdue (Partial) Reject
added to AckState

Alphabetical Listing of Tables

The tables in this appendix are in order by functional groupings. When you
know the name of a particular table, you can use the alphabetical listing below
to locate it quickly, without reference to the functional groupings.

Functional Page
Table Name Grouping Contents No.
Bloblnfo System Information about blobs 362
Certificates Keys Certificate information 375
CertTypelnfo Keys Certificate information for Ul display. 377
CRL Keys Certificate revocation list 376
DTServices System Service list definitions 360
EventLog Tracking Log of processing events 398

352 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Alphabetical Listing of Tables

Functional Page

Table Name Grouping Contents No.
Job System Information about scheduled jobs 357
KeyPairs Keys Public/private key pair information 378
MBAddresses Membership Member trading addresses 365
MsgFormats System Text strings for EventLog 400
MDNInfo Tracking Message Disposition Notification infor- 396

mation
MsgFormats Tracking Text strings for EventLog 400
Oftp Tracking OFTP EERP reconciliation information 397
Partnerships Partnerships Partnership definitions 366
PNCard Partnerships ~ Mercator card information 371
PNDocs Partnerships Partnership document definitions 368
PNGroup Partnerships Partnership group definitions 372
PNStd Partnerships EDI standards for partnerships 373
Services System Service definitions 359
Tracking Tracking Basic information for submission units 379

(same tracking ID)
TrkDoc Tracking Document-level information 388
TrkDocDetails Tracking Document card-level information 394
TrkGroup Tracking Group-level information 386
Trkintchg Tracking Interchange-level information 383
TrkSegment Tracking Document segment-level information 394
UniqueKeys System Control information for system-generated 361

unique keys
Versions System Information about product and database 359

schema versions

02 July 99

Appendix A, ECXpert Database Schema 353

Schema Overview

Schema Overview

Figure A.1 shows the relationship between the membership, partnership,
services, and key-related tables in the ECXpert database schema.

354 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Schema Overview

Figure A.1 Diagram of database schema for membership, partnerships, services, and certificates

Partnership-related tables Member-related tables Service-related tables

Member

- e Information s — — — — — —

Members

| | ol
| L —

Service Lists
DTServices

! |
! &

Member
————— Addresses

MBAddresses

Services
Services

e o e — o - -
1

Certificate-related tables

Certificate
— Information

r

| L certificates
|

|

Partnership
Information

Partnerships

v
|
'y

Partnership
EDI Standards

PNStd

<&
|
'

Group Tracking
PNGroup

o !
Public/Private Certificate :

Key Pairs Revocation List
KeyPairs CRL

Certificate
Type Info.

CertTypelnfo

S
|

Partnership
Documents

PNDocs

— e Zero, one, or more

Mercator Card
Information

PNCard

_ @P Oneormore

- o Exactly one
Z Zero or one

Oo- — - Non-key column used by ‘to’ table

02 July 99 Appendix A, ECXpert Database Schema 355

Schema Overview

Figure A.2 shows the relationship between the tracking-related tables in the
ECXpert database schema. It also shows other tables in the ECXpert database
schema.

Figure A.2 Diagram of database schema for trackingland other tables

Other tables : Tracking-related tables
: Scheduled Job : Submission Event Log
LLJJn!que ﬁeys Information : Unit Tracking EventLog
niquereys Job ' Tracking
Blob Version : Msg. Disp.
Information Information ' Notification
BloblInfo Versions : '“%?gﬁﬂ?,{‘ge MDNInfo
: Trkintchg
l OFTP EERP
: Reconciliation
' - Oftp
' Group Tracking
X TrkGroup
: Document
Tracking
Legend X TrkDoc
— e Zero, one, or more X
__ @P Oneormore : P P
PY 1 Exactly one X Segment Document
. Tracking Detail Tracking
___ g% Zeroorone ! TrkSegment TrkDocDetails
o- — - Non-key column used by ‘to’ table !

356 Netscape ECXpert Site Administrator’s Handbook 02 July 99

System-wide Tables

System-wide Tables

The system-wide group of tables store information that is used throughout the
ECXpert System.

Job

The Job table stores information about scheduled jobs.

Table A.1 Job

Name Req | Type (Len) Description

IBId” Y varchar2(60) Unique ID of scheduled job

JBDescription varchar2(255) | Description of scheduled job

JBExecType integer Type of scheduled job (e.g. script,
daemon, etc.)

JBExecName varchar2(60) Pathname to an executable or a
script, or the section name of an
ECXpert server

JBExecArgs long Arguments passed to scheduled job

JBExecCfgFile varchar2(60) Used internally for daemon

JBExecPktld integer Used internally for daemon

JBCriterionid integer Blob ID for job running criteria

JBBIkoutld integer Blob ID for blackout criteria

JBRepeatFrequency integer Seconds between each time the job
is to be run

JBRunTotal integer Total number of times job is to be
run

JBlteration integer Current iteration of the scheduled

(default 0) job

02 July 99 Appendix A, ECXpert Database Schema 357

System-wide Tables

Table A.1 Job
Name Req | Type (Len) Description
JBState integer Current state of the scheduled job.
(default 0) Valid states are:

0 - Job is submitted
1 - Job is waiting for the evaluation
of its criteria
2 - Job is ready to run
3 - Job is running
4 - The previous run is done
5 - Job is all done
6 - Job is held (suspended) by user
7 - Job is aborted due to non-recov-
erable error

JBLastRunRetCode integer Return code from last iteration of
scheduled job

JBLastRunErrno integer Error number from last iteration of
scheduled job

JBLastRunErrMsg varchar2(255) | Error message from last iteration of
scheduled job

JBLastRunTime date Starting time of last iteration of
scheduled job

JBPrevEvalTime date Time of most recent evaluation of
criteria

JBNextEvalTime date Time of next evaluation of criteria

JBLogLevel integer Indicates logging level (e.g. warn-
ing, error, etc.
Valid logging levels are:
Lower than 10 - informational
10 - 20 - warning ('’ means
exclude while T means include)
20 - 30 - error
Higher than 30 - no logging

JBModByGroup varchar2(60) ID of group modified by

JBModByUser varchar2(60) ID of user modified by

JBModDt date Modification date. Default: system

date.

P Primary key

358 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

System-wide Tables

Versions

The Versions table stores information about the current version of ECXpert and
the current version of the database schema.

Table A.2 Versions

Name Req | Type (Len) Description

Product varchar2(30) Product name (ECXpert).

ProductVersion varchar2(20) Version number of the product

SchemaVersion varchar2(20) Version number of the database

schema

MBModDt date Modification date

P Primary key: OFFileName + OFTimeStamp + OFDateStamp

Services

The Services table stores definitions of individual services that can be combined
into service lists in the DTServices table.

Table A.3 Services

Name Req | Type (Len) Description
SVRIdP Y integer Service ID
SVRName varchar2(60) Service name
SVRType integer Service type. Valid values:
0 = STunknown
1 = STinternal (ECXpert internal
service, e.g. parse, xlat)
2 = STscript (ECXpert external
script file)
3 = STexe (ECXpert external exe-
cutable file)
4 = STdIl (function in a shared
library, e.g. DLL)
SVRPathName varchar2(255) | Path name to service code file
SVREntryName varchar2(60) Entry name

Appendix A, ECXpert Database Schema 359

System-wide Tables

Table A.3 Services (Continued)

Name Req | Type (Len) Description

SVRMaxThread integer Maximum number of threads

SVRParam varchar2(255) | Service description

SVRObjPerm integer Obiject permission

SVRModByGroup varchar2(60) ID of group modified by

SVRModByUser varchar2(60) ID of user modified by

SVRModDt date Modification date. Default: system
date.

P Primary key

DTServices

The DTServices table stores definitions of service lists, built from individual
services stored in the Services table.

Table A.4 DTServices

Name Req | Type (Len) Description

DTSServiceListName P varchar2(60) Service list name

DTSSeqNum ™ Y integer Sequence number

DTSSchedType Integer Indicates whether service list is
scheduled

DTSSndrMBName V' F | Y varchar2(60) | Sending member name

DTSRcvrMBName Y F varchar2(60) Receiving member name

DTSTypeName ' F varchar2(60) Service file type name OR service
data object type name

DTSSVRId integer Service ID

DTSSVRName varchar2(60) Service name

DTSServiceParams varchar2(255) | Service parameters

DTSErrorHandler varchar2(60) Name of user-specified service for

error handler

360 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

Table A.4 DTServices (Continued)

System-wide Tables

Name Req | Type (Len) Description

DTSDesc varchar2(255) | Service description

DTSObjPerm integer Object permission

DTSModByGroup varchar2(60) ID of group modified by

DTSModByUser varchar2(60) ID of user modified by

DTSModDt date Modification date. Default: system
date.

P Primary key: DTSSer vi ceLi st Nane + DTSSegqNum
v Unique key: DTSSeqNum+ DTSSndr MBNane + DTSRcvr MBNane + DTSTypeNane
F Foreign keys: DTSTypeNane into Services (SVRNane);

DTSSVRI d into Services (SVRI d);

DTSSndr MBNane and DTSRcvr MBNane into Members (MBNane);

UniqueKeys

The UniqueKeys table stores control information for all unique keys that are
generated by the ECXpert System.

Table A.5 UniqueKeys

Name Req | Type (Len) Description

UKName P Y varchar2(60) Unique key name

UKLastValue integer Last value assigned to this key

UKModDt date Modification date. Default: system
date.

P Primary key

Appendix A, ECXpert Database Schema 361

Membership-related Tables

BloblInfo

The Bloblinfo table stores blobs used by the ECXpert System.
Table A.6 Blobinfo

Name Req | Type (Len) Description
BLOBIdP Y integer Blob ID
BLOBType integer Kind of blob. Valid values are:

0 = BTunknown
1 = BTcertificate
2 = BTsubject

3 = BTtrackfile

4 = BTjob
BLOBValue long raw Contents of blob
BLOBValuelLen integer Length of contents
BLOBObjPerm integer Object permission
BLOBModByGroup varchar2(60) ID of group modified by
BLOBModByUser varchar2(60) ID of user modified by
BLOBModDt date Modification date. Default: system
date.

P Primary key

Membership-related Tables

The membership-related group of tables store information related to members
in the ECXpert System.

362 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Members

Membership-related Tables

The Members table stores the basic definitions of individual members within

the ECXpert System.
Table A.7 Members

Name

Req

Type (Len)

Description

MBName ”

varchar2(60)

Member name.

MBType

integer

Member type.

LDAP name: BusinessCategory
Valid values:

0 = MBTunknown

1 = MBTsysAdmin

2 = MBTmembershipAdmin (not
used in release 3.0)

3 = MBTgroupAdmin (not used in
release 3.0)

4 = MBTinternalMember (not used
in release 3.0)

5 = MBTtradingPartner (external
member)

MBParentName "

varchar2(60)

Member parent name

MBIsGroup

integer

Is member a group?

MBActive

integer

Is member active? LDAP name:
EmployeeType, bit 0x01

MBPassword

varchar2(255)

Member password

MBPKPwd

varchar2(255)

(internal use)
LDAP name: SeeAlso

MBInfoSource

varchar2(255)

Not used in release 3.0
LDAP name: LabeledURI

MBTrusted

integer

Is member trusted? LDAP name:
EmployeeType, bit 0x02

MBOftpFlag

Integer

Not used in release 3.0

Indicates whether an ECX member
is allowed to change passward at
beginning of OFTP session.

02 July 99

Appendix A, ECXpert Database Schema 363

Membership-related Tables

Table A.7 Members (Continued)

Name Req | Type (Len) Description

MBReadSpan Integer The number of days back that
TradingXpert shows documents to
this member in TradingXpert
inbound and outbound document

lists.
MBContactName varchar2(60) Member contact’s name

LDAP name: FullName
MBContactAddressl varchar2(60) Contact’s address line 1

LDAP name: Address, bytes 0-59
MBContactAddress2 varchar2(60) Contact’s address line 2

LDAP name: Address, bytes 60-119
MBContactCity varchar2(60) Contact’s city

LDAP name: Locality
MBContactState varchar2(60) Contact’s state or province

LDAP name: State
MBContactZip varchar2(60) Contact’s zip or postal code

LDAP name: PostalCode
MBContactCountry varchar2(60) Contact’s country

LDAP name: Address, bytes 120-

179
MBContactPhone varchar2(60) Contact’s phone number

LDAP name: PhoneNo
MBContactFax varchar2(60) Contact’s fax number

LDAP name: Fax
MBContactDesc varchar2(255) | Contact’s description

LDAP name: Description
MBContactEmailld varchar2(255) | Contact’'s email. LDAP name: Email
MBODbjPerm integer Object permission
MBModByGroup varchar2(60) ID of group modified by
MBModByUser varchar2(60) ID of user modified by
MBModDt date Modification date. Default: system

date.

P Primary key

364 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

F Foreign key: MBPar ent Nanme into Members (MBName)

MBAddresses

The MBAddresses table stores trading addresses for members. Each member
defined in Members table may have multiple trading addresses stored in

MBAddresses table.
Table A.8 MBAddresses

Membership-related Tables

Name Req | Type (Len) Description

MBAName F varchar2(60) Member name

MBAQual ™Y varchar2(60) | Qualifier for trading address
MBAQualld Y varchar2(60) | Main trading address
MBAODbjPerm integer Object permission
MBAModByGroup varchar2(60) ID of group modified by
MBAModByUser varchar2(60) ID of user modified by
MBAModDt date Modification date. Default: system

date.

P Primary key: MBAQual + MBAQualld

F Foreign keys: MBAName into Members (MBNane)
Y Unique key: MBAQual + MBAQualld

Appendix A, ECXpert Database Schema 365

Partnership-related Tables

Partnership-related Tables

The partnership-related group of tables store information on trading partner-
ships.

Partnerships

The Partnerships table stores the basic information defining a trading
partnership.

Table A.9 Partnerships

Name Req | Type (Len) Description

PNId? Y integer Partnership ID

PNSndrMBName F varchar2(60) Sending member name

PNSndrQual Y F Y varchar2(60) Qualifier for sending member’s
trading address

PNSndrQualld Y F Y varchar2(60) | Sending member’s main trading
address

PNRcvrMBName F varchar2(60) Receiving member name

PNRcvrQual V' F Y varchar2(60) Qualifier for receiving member’s
trading address

PNRcvrQualld V' F Y varchar2(60) Receiving member’s main trading
address

PNActive integer Is partnership active?

PNSndrCertType integer Certificate type. Valid values:
0 = CTUnknown
1 = CTSelf

2 = CTVerisignC3
3 = CTVerisignC2
4 = CTVerisignC1
5+ Other CA root(s) user imports

366 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Partnership-related Tables

Table A.9 Partnerships (Continued)

Name Req | Type (Len) Description

PNRcvrCertType integer Certificate type. Valid values:
0 = CTUnknown
1 = CTSelf

2 = CTVerisignC3
3 = CTVerisignC2
4 = CTVerisignC1
5+ Other CA root(s) user imports

PNSecurity integer SMTP security. Valid values:

0 = Plain MIME (send as base64
encoding only)

1 = Encrypted (encrypted with
receiver’s public key)

2 = Signed (signed with sender’s
private key)

3 = SignedAndEncrypted (signed
first, then encrypted)

PNGenOptEnv integer Enveloping Options:
0 = No UNA, No UNG
1 = UNA only
2 = UNG only

3 = UNA and UNG

PNGenlIntgAckFlags integer Generate interchange acknowledg-
ments flags (internal use)

PNIntgAckWait integer The number of minutes to wait
before the acknowledgment
becomes overdue. Default: 525600.

PNDesc varchar2(255) | Partnership description

PNODbjPerm integer Object permission

PNModByGroup varchar2(60) ID of group modified by

PNModByUser varchar2(60) ID of user modified by

PNModDt date Modification date. Default: system
date.

P Primary key
v Unique key: PNSndr Qual + PNSndr Qual | d + PNRcvr Qual + PNRcvr Qual I d

F Foreign keys: PNSndr MBNan®e into Members (MBNare); PNSndr Qual into MBAddresses (MBAQual);
PNSndr Qual | d into MBAddresses (MBAQual | d); PNRcvr MBNane into Members (MBNane);
PNRcvr Qual into MBAddresses (MBAQual); PNRcvr Qual | d into MBAddresses (MBAQual | d)

02 July 99 Appendix A, ECXpert Database Schema 367

Partnership-related Tables

PNDocs

The PNDocs table stores partnership document information.
Table A.10 PNDocs

Name Req | Type (Len) Description
PDPGId ™ F Y integer Partnership ID
PDDocType P Y varchar2(60) Document type
PDActive integer 1 if active
PDPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow
PDAppDOTName varchar2(60) Application data object type name
PDMapName varchar2(60) Map file name
PDMapDirection integer Translation type. Valid values:

0 = XLTunknown

1= XLTinbound (EDI-to-Applica-
tion)

2 = XLToutbound (Application-to-
EDI)

3 = XLTedi2edi (EDI-to-EDI)

4 = XLTapp2app (Application-to-

Application)
5 = XLTnoxlat (None; pass-through
mode)

PDMapComment- varchar2 (8) The segment ID used as “comment”

Segld type in the Mercator map. Default
is NTE.

PDAckExpected integer Is functional acknowledgment
expected?

PDAckWait integer The number of minutes to wait

before the acknowledgment
becomes overdue. Default:
5259600.

PDLastCtrINum varchar2(60) Last control number generated

368 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Table A.10 PNDocs (Continued)

Partnership-related Tables

Name

Req

Type (Len)

Description

PDLock

integer

(internal use)

PD1stXportType

varchar2(60)

Primary transport protocol. Valid
values include:

“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)

“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

PD1stXportParam

long

Primary transport protocol parame-
ter

PD2ndXportType

varchar2(60)

Alternate transport protocol. Valid
values include:

“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)

“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

PD2ndXportParam

varchar2(255)

Alternate transport protocol param-
eter

PDSendType

integer

Immediate or scheduled

PDDeleteWait

integer

Retention period (days) before
delete

PDArchiveWait

integer

Retention period (days) before
archiving (not used in release 3.0)

Appendix A, ECXpert Database Schema 369

Partnership-related Tables

Table A.10 PNDaocs (Continued)

Name Req | Type (Len) Description

PDPreEnveloped integer Is data pre-enveloped? Valid values:
0 = PEunknown

1 = PEenveloped (bundle preserves
all envelopes)

2 = PEnonenveloped (bundle gen-
erates and/or replaces all enve-
lopes)

3 = PEpreenvelopedEDI(not used)
4 = PEGetCtrINo (Bundle only sup-
plies the control number and pre-
serves everything else in envelope)

5 = PEPreserveCtrINo (Bundle only
preserves the envelope control

number)

PNPreCommSVRId integer Service ID of service to execute
before sending to a communica-
tions agent

PDDesc varchar2(255) | Document description

PDObjPerm integer Object permission

PDModByGroup varchar2(60) ID of group modified by

PDModByUser varchar2(60) ID of user modified by

PDModDt date Modification date. Default: system
date.

P Primary key: PDPG d + PDDocType
F Foreign keys: PDPG d into PNStd (PSI d)

370 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

PNCard

Partnership-related Tables

The PNCard table stores information about the Mercator input and output cards
associated with a partnership document.

Table A.11 PNCard

Name Req | Type (Len) Description

PDDPGId PF integer Partnership ID
PDDDocType PF varchar2(60) Document type
PDDCardNum P integer Card number
PDDSndrMBName varchar2(60) Sending member name
PDDRcvrMBName varchar2(60) Receiving member name
PDDCardDocType varchar2(60) Card document type
PDDObjPerm integer Object permission
PDDModByGroup varchar2(60) ID of group modified by
PDDModByUser varchar2(60) ID of user modified by
PDDModDt date Modification date. Default: system

date.

P Primary key: PDDPG d + PDDDocType + PDDCar dNum
F Foreign keys: PDDPSI d into PNDocs (?); PDDDocType into PNDocs(?)

Appendix A, ECXpert Database Schema 371

Partnership-related Tables

PNGroup

The PNGroup table stores information on expected document groups,
especially of the GS/GE and UNG/UNE segments, of incoming files for a given
partnership.

Table A.12 PNGroup

Name Req | Type (Len) Description

PGId Y integer Unique ID number of partnership
group.

PGPSId ™ F Y integer Standard associated with partner-
ship group.

PGGroupType P Y varchar2(60) Partnership group

PGSndrQual ” Y varchar2(60) Qualifier for the application sender
code. Used only in EDIFACT.

PGSndrAppCode Y varchar2(60) Application sender code.

PGRcvrQual Y varchar2(60) Qualifier for the application
receiver code.

PGRcvrAppCode Y varchar2(60) Application receiver code.

PGLastGroupCtrINum varchar2(60) Last group control number gener-
ated

PGLockGroup integer (internal use)

PGGenDocAck integer Generate document acknowledg-

ments flags (internal use)

PGGrpAckWait integer The number of minutes to wait
before the acknowledgment
becomes overdue. Default: 525600.

PGObjPerm integer Object permission

PGModByGroup varchar2(60) ID of group modified by

PGModByUser varchar2(60) ID of user modified by

PGModDt date Modification date. Default: system
date.

P Primary key: PGPSI d + PGGr oupType + PGSndr Qual + PGSndr AppCode + PGRcvr Qual + PGRcvr App-
Code

F Foreign key: PGPS d into PNStd (PSI d)

372 Netscape ECXpert Site Administrator’s Handbook 02 July 99

PNStd

Partnership-related Tables

The PNStd table stores EDI standard information for a partnership defined in

the Partnership table.

Table A.13 PNStd

Name Req | Type (Len) Description

Psid” Y integer Standards 1D

PSPNId Y F Y integer Partnership ID

PSStandard Y Y varchar2(60) EDI standard

PSVersion Y Y varchar2(60) EDI standard version number

PSRelease Y Y varchar2(60) EDI standard release number

PSLastIntgCtrINum varchar2(60) Last interchange control number
generated

PSLocklintg integer (internal use)

PSTestProdFlag integer Test vs. production data flag. Valid
values:
0 = TPFunknown
1 = TPFproduction (production
data)
2 = TPFtest (test data)

PSSegTerm varchar2(6) Segment terminator character

PSEImtSep varchar2(6) Data element separator character

PSSubEImtSep varchar2(6) Data sub-element separator charac-
ter

PSDecPtChar varchar2(6) Decimal point character

PSRelChar varchar2(6) Release character

PSOutStandard varchar2(60) Interchange standard user wishes
to appear in bundled EDI docu-
ments

PSOutVersion varchar2(60) Interchange version user wishes to
appear in bundled EDI documents

PSOutRelease varchar2(60) Interchange release user wishes to

appear in bundled EDI documents

02 July 99

Appendix A, ECXpert Database Schema 373

Partnership-related Tables

Table A.13 PNStd (Continued)

Name Req | Type (Len) Description

PSObjPerm integer Object permission

PSModByGroup varchar2(60) ID of group modified by

PSModByUser varchar2(60) ID of user modified by

PSModDt date Modification date. Default: system
date.

P Primary key: PSI d

F Foreign key: PSPNI d into Partnerships (PNI d)
v Unique key: PSPNI d + PSSt andar d + PSVer si on + PSRel ease

374 Netscape ECXpert Site Administrator’s Handbook

02 July 99

Certificate-related Tables

02 July 99

Certificate-related Tables

The certificate-related group of tables store information supporting public key
encryption in the ECXpert System.

Certificates

The Certificates table stores information on certificates.

Table A.14 Certificates

Name Req | Type (Len) Description
CRTDigest ™Y Y varchar2(60) Certificate issuer name and serial
number digest
CRTCertType ™!V Y integer Certificate type. Valid values:
0 = CTUnknown
1 = CTSelf
2 = CTVerisignC3
3 = CTVerisignC2
4 = CTVerisignC1
5+ Other CA root(s) user imports
CRTCertUsage Y integer Indicates how the certificate is
being used (i.e. to digitally sign,
encrypt, or both)
CRTSubjectDigest Y varchar2(60) Subject named digest
CRTPublicKeyDigest varchar2(30) Public key digest
CRTBIlobld integer (internal use)
CRTSubjectBlobld integer (internal use)
CRTExpireDt Y integer Certificate expiration date
CRTName varchar2(60) Name of issuing certificate author-
ity
CRTIsRoot integer Indicates if certificate is a root cer-
tificate
CRTMBName Y F Y varchar2(60) | Member name
CRTMBEmailld varchar2(60) Member's e-mail address

Appendix A, ECXpert Database Schema 375

Certificate-related Tables

Table A.14 Certificates (Continued)

Name Req | Type (Len) Description

CRTDesc varchar2(255) | Certificate description

CRTObjPerm integer Object permission

CRTModByGroup varchar2(60) ID of group modified by

CRTModByUser varchar2(60) ID of user modified by

CRTModDt date Modification date. Default: system
date.

P Primary key: CRTDi gest + CRTCert Type
F Foreign key: CRTPubl i cKeyDi gest into KeyPairs (KPDi gest); CRTMBNane into Members (MBNane)
v Unique key: CRTCer t Type + CRTDi gest + CRTMBNane

CRL

The CRL table stores the certificate revocation list.

Table A.15 CRL

Name Req | Type (Len) Description

CRLIssuerDigest " Y varchar2(60) Certificate issuer digest

CRLTime integer Time stamp

CRLValue long raw Certificate revolution list
CRLValuelLen integer Length of certificate (bytes)
CRLDesc varchar2(255) | Description

CRLODbjPerm integer Object permission
CRLModByGroup varchar2(60) ID of group modified by
CRLModByUser varchar2(60) ID of user modified by
CRLModDt date Modification date. Default: system

date.

P Primary key

376 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

CertTypelnfo

The CertTypelnfo table stores information on certificates for display through the

user interface.
Table A.16 CertTypelnfo

Certificate-related Tables

Name Req | Type (Len) Description
CTICertType " Y integer Certificate type. Valid values:

0 = CTUnknown

1 = CTSelf

2 = CTVerisignC3

3 = CTVerisignC2

4 = CTVerisignC1

5+ Other CA root(s) user imports
CTICertTypeName Y varchar2(60) Name of certificate authority
CTICertTypeDesc varchar2(60) Certificate authority description
CTIObjPerm integer Object permission
CTIModByGroup varchar2(60) ID of group modified by
CTIModByUser varchar2(60) ID of user modified by
CTIModDt date Modification date. Default: system

date.

P Primary key

Appendix A, ECXpert Database Schema 377

Certificate-related Tables

KeyPairs

The KeyPairs table stores public/private key pair information.

Table A.17 KeyPairs

Name Req | Type (Len) Description

KPDigest ™ F Y varchar2(30) | Public key digest

KPPrivateKey long raw Private key (encrypted)

KPPrivateKeyLen integer Private key length

KPDesc varchar2(255) | Key pair description

KPObjPerm integer Object permission

KPModByGroup varchar2(60) ID of group modified by

KPModByUser varchar2(60) ID of user modified by

KPModDt date Modification date. Default: system
date.

P Primary key

F Foreign key: KPDi gest into Certificates (CRTPubl i cKeyDi gest)

378 Netscape ECXpert Site Administrator’s Handbook

02 July 99

Tracking-related Tables

02 July 99

Tracking-related Tables

The tracking-related group of tables supports document tracking in the ECXpert

System.

Tracking

The Tracking table stores information associated with tracking IDs.

Table A.18 Tracking

File

Name Req | Type (Len) Description

TRKId P Y integer Tracking ID - ECXpert internal
tracking number for the submission
unit

TRKServiceListName varchar2(60) Service list name associated with
tracking 1D

TRKDOTName varchar2(60) Data object type name (e.g. the
document type specified in the
partnership)

TRKSndrMBName varchar2(60) Sending member name

TRKRcvrMBName varchar2(60) Receiving member name

TRKCurServiceldx integer Current service index, , which indi-
cates which service is currently run-
ning: either 1 for submission or the
offset corresponding to the service
in the service list -1

TRKCurServiceName varchar2(60) Current service hame

TRKCurServiceParam- varchar2(255) | Stores the custom service parame-

ter file name

Appendix A, ECXpert Database Schema 379

Tracking-related Tables

Table A.18 Tracking (Continued)

Name Req | Type (Len) Description

TRKPrimaryState integer Primary tracking state. Valid values:
0 = TSunknown - indicates NULL
value

1 = TSready - indicates service has
yet to be invoked

2 = TSinProgress - indicates service
has been invoked

3 = TSdoneOK - indicates service is
done with no errors

4 = TSdoneBad - indicates service
is done with errors

5 = TSalldoneOK - indicates last
service on service list is done and
TRKState is TSdoneOK

6 = TSbundled - identifies bundle
generated trackings

TRKState integer Tracking state. Valid values:
0 = TSunknown - indicates NULL
value

1 = TSready - indicates service has
yet to be invoked

2 = TSinProgress - indicates service
has been invoked

3 = TSdoneOK - indicates service is
done with no errors

4 = TSdoneBad - indicates service
is done with errors

5 = TSalldoneOK - indicates last
service on service list is done and
TRKState is TSdoneOK

6 = TSbundled - identifies bundle
generated trackings

TRKErrnum integer Tracking error number. Default: 0.
TRKPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow

380 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Table A.18 Tracking (Continued)

Tracking-related Tables

Name

Req

Type (Len)

Description

TRKCreationDt

date

Tracking ID creation date. Default:
system date.

TRKLock

integer

Is Tracking ID locked?

TRKMapDirection

integer

Translation type. Valid values:

0 = XLTunknown

1= XLTinbound (EDI-to-Applica-
tion)

2 = XLToutbound (Application-to-
EDI)

3 = XLTedi2edi (EDI-to-EDI)

4 = XLTapp2app (Application-to-
Application)

5 = XLTnoxlat (None; pass-through
mode)

TRKXportType

varchar2(60)

Transport protocol. Valid values
include:

“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)

“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

TRKMDNState

integer

Message disposition notification
state. Valid values:

0 = MSunknown

1 = MSready (MDN generated and
ready to send)

2 = MSsent (MDN is sent)

3 = MSwaiting (email is sent and is
waiting for an incoming MDN)

4 = MSreconciled (Received MDN
and reconciled it with original
email)

02 July 99

Appendix A, ECXpert Database Schema 381

Tracking-related Tables

Table A.18 Tracking (Continued)

Name Req | Type (Len) Description

TRKMDNOverDueDt date The date after which the message
disposition notification becomes
over due. Default: system date +
3652.

TRKExtReference varchar2(60) External reference

TRKExtPathName varchar2(255) | External pathname

TRKPartNum integer Current part number

TRKPartTotal integer Part total

TRKPartType integer Attachment or parts

TRKCustominfo varchar2(255) | (internal use)

TRKMisc varchar2(255) | (internal use)

TRKFullPathName varchar2(255) | Full path name

TRKSize integer Submission Unit file size (bytes)

TRKBIobld integer (internal use)

TRKObjPerm integer Object permission

TRKModByGroup varchar2(60) ID of group modified by

TRKModByUser varchar2(60) ID of user modified by

TRKModDt date Modification date. Default: system
date.

P Primary key

382 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Tracking-related Tables

Trkintchg

The Trkintchg table stores information on the interchange level of the EDI
envelope.

Table A.19 Trkintchg

Name Req | Type (Len) Description
TITrkld ™ F Y integer ECXpert internal tracking number
for the submission unit
Thd P Y integer Interchange identifier
TICurServiceldx integer Current service index
TIState integer Tracking state. Valid values:
0 = TSunknown
1 = TSready
2 = TSinProgress
3 = TSdoneOK

4 = TSdoneBad
5 = TSalldoneOK

6 = TSbundled

TIErrmum integer Interchange error number. Default:
0.

TIParseErrnum integer (internal use)

TIPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow

TIPSId integer Partnership ID

TISndrQual varchar2(60) Sending member qualifier for trad-
ing address

TISndrQualld varchar2(60) Sending member main trading
address

TIRcvrQual varchar2(60) Receiving member qualifier for
trading address

TIRcvrQualld varchar2(60) Receiving member main trading
address

02 July 99 Appendix A, ECXpert Database Schema 383

Tracking-related Tables

Table A.19 Trkintchg (Continued)

Name Req | Type (Len) Description

TIStandard varchar2(60) EDI standard used

TIVersion varchar2(60) Version number of EDI standard
used

TIRelease varchar2(60) Release number of EDI standard
used

TITestProdFlag integer Test vs. production data flag. Valid
values:

0 = TPFunknown

1 = TPFproduction (production
data)

2 = TPFtest (test data)

TIAckState integer Functional acknowledgment state.
A single value is computed by add-
ing the following component val-
ues as events occur:

0 = ASunknown

1 = ASwaiting

2 = ASok

4 = ASerror

8 = ASreject

16 = ASpreject

32 = ASsent

64 = ASsendFailed

128 = ASreconciled

For detailed breakdown of actual
values and messages displayed, see
“Values of AckState” on page 349.

TIAckOverDueDt date The number of minutes to wait
before the acknowledgment
becomes overdue. Default: system
date + 3652.

TIGenIntgAckFlags integer Generate functional acknowledg-

ment? Valid values:

0 = GAunknown

1 = GAnoack (none)

2 = GAgroup (group level)
3 = GAdoc (document level)

384 Netscape ECXpert Site Administrator’s Handbook

02 July 99

Table A.19 Trkintchg (Continued)

Tracking-related Tables

Name Req | Type (Len) Description

TICtrINum varchar2(60) EDI standard control number,
determined by trading partner rela-
tionship

TIFileName varchar2(255) | Submission Unit file name

TICreationDt date Submission Unit file creation date

TISize integer Interchange size (bytes)

TIHdrStartOff integer Interchange header start offset
(bytes)

TIHdrSize integer Interchange header size (bytes)

TITIrStartOff integer Interchange trailer start offset
(bytes)

TITIrSize integer Interchange trailer size (bytes)

TISegTerm varchar2(6) Segment terminator

TIEImtSep varchar2(6) Element separator

TISubEImtSep varchar2(6) Sub-element separator

TIDecPtChar varchar2(6) Decimal point character

TIRelChar varchar2(6) Release character

TIObjPerm integer Object permission

TIModByGroup varchar2(60) ID of group modified by

TIModByUser varchar2(60) ID of user modified by

TIModDt date Modification date. Default: system
date.

P Primary key: TI Trkld + Tl 1 d
F Foreign key: TI Tr kI d into Tracking (TRKI d)

02 July 99 Appendix A, ECXpert Database Schema 385

Tracking-related Tables

TrkGroup

The TrkGroup table stores information on the group level of the EDI envelope.
Table A.20 TrkGroup

Name Req | Type (Len) Description
TGTrkld ™ F Y integer BDG internal tracking number for
the submission unit
TGIntgld P integer Interchange identifier
TGIdP integer Group identifier
TGType varchar2(10) Group document type.
TGCurServiceldx integer Current service index
TGState integer Tracking state. Valid values:
0 = TSunknown
1 = TSready
2 = TSinProgress
3 = TSdoneOK
4 = TSdoneBad
5 = TSalldoneOK
6 = TSbundled
TGErrnum integer Tracking error number. Default: 0.
TGParseErrnum integer Parse error number. Default: 0.
TGPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow
TGSndrQual varchar2(60) Sending member main trading
address
TGSndrAppCode varchar2(60) Application sender code.
TGRcvrQual varchar2(60) Receiving member main trading
address
TGRcvrAppCode varchar2(60) Application receiver code.
TGStandard varchar2(60) EDI standard used

386 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

Table A.20 TrkGroup (Continued)

Tracking-related Tables

Name

Req

Type (Len)

Description

TGVersion

varchar2(60)

Version number of EDI standard
used

TGRelease

varchar2(60)

EDI standard release number

TGCtrINum

varchar2(60)

EDI standard control number,
determined by trading partner rela-
tionship

TGIncludedSets

integer

The number of transaction sets
(documents) included in the group.

TGAckState

integer

Functional acknowledgment state.
A single value is computed by add-
ing the following component val-
ues as events occur:

0 = ASunknown

1 = ASwaiting

2 = ASok

4 = ASerror

8 = ASreject

16 = ASpreject

32 = ASsent

64 = ASsendFailed

128 = ASreconciled

For detailed breakdown of actual
values and messages displayed, see
“Values of AckState” on page 349.

TGAckOverDueDt

date

The number of minutes to wait
before the acknowledgment
becomes overdue. Default: system
date + 3652.

TGCreationDt

date

Submission Unit file creation date.
Default: system date.

TGSize

integer

Submission Unit file size

TGHdrStartOff

integer

Header start offset (bytes)

TGHdrSize

integer

Header size (bytes)

TGTIrStartOff

integer

Trailer start offset (bytes)

TGTIrSize

integer

Trailer size (bytes)

Appendix A, ECXpert Database Schema 387

Tracking-related Tables

Table A.20 TrkGroup (Continued)

Name Req | Type (Len) Description

TGObjPerm integer Object permission

TGModByGroup varchar2(60) ID of group modified by

TGModByUser varchar2(60) ID of user modified by

TGModDt date Modification date. Default: system
date.

P Primary key: TGTrkld + TG ntgld + TG d
F Foreign key: TGTr kI d into Tracking (TRKI d); TG nt gl d into Trkingchg (TI Tr kI d)

TrkDoc

The TrkDoc table stores information on the document level of the EDI

envelope.
Table A.21 TrkDoc

Name Req | Type (Len) Description

TDId P Y varchar(30) Document-level internal tracking
ID

TDTrkldF integer Tracking ID - internal tracking
number for the submission unit

TDIntgld integer Interchange identifier

TDGrpld integer Group identifier

TDDocld integer Document identifier

TDCurServiceldx integer Current service index

TDCurServiceName varchar2(60) Current service name

TDState integer Tracking state. Valid values:

0 = TSunknown

1 = TSready
2 = TSinProgress
3 = TSdoneOK

4 = TSdoneBad
5 = TSalldoneOK
6 = TSbundled

388 Netscape ECXpert Site Administrator’s Handbook

02 July 99

02 July 99

Table A.21 TrkDoc (Continued)

Tracking-related Tables

Name Req | Type (Len) Description
TDErrnum integer Tracking error number. Default: 0.
TDParseErrnum integer Parse error number. Default: 0.
TDXlatState integer Translation state
TDXlatErrnum integer Translation error number. Default:
0.
TDPriority integer Processing priority. Valid values:
0 = PDunknown
1 = PDhigh
2 = PDmedium
3 = PDlow
TDStartXlatDt date Date translation started. Default:
system date.
TDEndXlatDt date Date translation ended. Default:
system date.
TDLock integer (internal use)
TDPSId integer Partnership standard 1D
TDDocType varchar2(60) Document type
TDTestProdFlag integer Test vs. production data flag. Valid
values:
0 = TPFunknown
1 = TPFproduction (production
data)
2 = TPFtest (test data)
TDSndrMBName varchar2(60) Sender member’s name
TDSndrQual varchar2(60) Sender EDI qualifier
TDSndrQualld varchar2(60) Sender EDI qualifier ID
TDRcvrMBName varchar2(60) Receiver member’s name
TDRcvrQual varchar2(60) Receiver EDI qualifier
TDRcvrQualld varchar2(60) Receiver EDI qualifier ID
TDSndrAppQual varchar2(60) Qualifier for the application sender
code. Used only in EDIFACT.
TDSndrAppCode varchar2(60) Application sender code.

Appendix A, ECXpert Database Schema 389

Tracking-related Tables

Table A.21 TrkDoc (Continued)

Name Req | Type (Len) Description

TDRcvrAppQual varchar2(60) Qualifier for the application
receiver code.

TDRcvrAppCode varchar2(60) Application receiver code. Pro-
vides for defining trading partner-
ships at the functional group level.

TDMapName varchar2(60) Name of map for translation
TDStandard varchar2(60) EDI standard for translation
TDVersion varchar2(60) Version of EDI standard
TDRelease varchar2(60) Release of EDI standard
TDMapDirection integer Translation type. Valid values:

0 = XLTunknown

1= XLTinbound (EDI-to-Applica-
tion)

2 = XLToutbound (Application-to-
EDI)

3 = XLTedi2edi (EDI-to-EDI)

4 = XLTapp2app (Application-to-
Application)

5 = XLTnoxlat (None; pass-through
mode)

TD1stXportType varchar2(60) Primary transport protocol. Valid
values include:

“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)

“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

TD1stXportParam long Transport parameter

390 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Tracking-related Tables

Table A.21 TrkDoc (Continued)

Name Req | Type (Len) Description

TD2ndXportType varchar2(60) Alternate transport protocol. Valid
values include:

“submit” for submit utility
“comm_ftp_geis” for GEIS FTP
“ftp-local-application” for local FTP
(application)

“ftp-local-edi” for local FTP (EDI)
“commhttp-aiag” for HTTP AIAG
“commhttp-gisb” for HTTP GISB
“commsmtp-receive-plain” for
SMTP receive server (plain)
“commsmtp-receive-smime” for
SMTP receive server (S/MIME)

TD2ndXportParam varchar2(255) | Transport parameter

TDSendType integer Sender type: immediate or sched-
uled

TDSourceDocld char(30) Source document ID

TDAckDocld char(30) Functional acknowledgment docu-
ment ID

TDAckState integer Functional acknowledgment state.

A single value is computed by add-
ing the following component val-
ues as events occur:

0 = ASunknown

1 = ASwaiting
2 = ASok

4 = ASerror

8 = ASreject
16 = ASpreject
32 = ASsent

64 = ASsendFailed

128 = ASreconciled

For detailed breakdown of actual
values and messages displayed, see
“Values of AckState” on page 349.

02 July 99 Appendix A, ECXpert Database Schema 391

Tracking-related Tables

Table A.21 TrkDoc (Continued)

Name Req | Type (Len) Description

TDAckOverDueDt date The number of minutes to wait
before the acknowledgment
becomes overdue. Default: system
date + 3652.

TDCreationDt date Document creation date. Default:
system date + 3652.

TDCtrINum varchar2(60) Control number

TDMapRestrictFlags integer Map restriction flags

TDFileName varchar2(255) | Map file name

TDSize integer Document size (bytes)

TDHdrStartOff integer Document header start offset
(bytes)

TDHdrSize integer Document header size (bytes)

TDTIrStartOff integer Document trailer start offset (bytes)

TDTIrSize integer Document trailer size (bytes)

TDUserLink1Name varchar2(60) User link 1 name

TDUserLink1Value varchar2(60) User link 1 value

TDUserLink2Name varchar2(60) User link 2 name

TDUserLink2Value varchar2(60) User link 2 value

TDArchiveWait integer Wait time to archive

TDDeleteWait integer Wait time to delete

TDDataState integer Data state. Valid values:

0 = DSunknown

1 = DSreadyForPurge
2 = DSpurged

3 = DSreadyForArchive
4 = DSarchived

5 = DSreadyForRestore
6 = DSrestored

392 Netscape ECXpert Site Administrator’s Handbook

02 July 99

Table A.21 TrkDoc (Continued)

Tracking-related Tables

Name

Req

Type (Len)

Description

TDPreEnveloped

integer

Is data pre-enveloped? Valid values:
0 = PEunknown

1 = PEenveloped (bundle preserves
all envelopes)

2 = PEnonenveloped (bundle gen-
erates and/or replaces all enve-
lopes)

3 = PEpreenvelopedEDI(not used)
4 = PEGetCtrINo (Bundle only sup-
plies the control number and pre-
serves everything else in envelope)
5 = PEPreserveCtrINo (Bundle only
preserves the envelope control
number)

6 = PEFill (Bundle fills in the miss-
ing envelope information - not
used in this release)

TDBundleState

integer

Bundle state. Valid values:
0 = BSunknown

1 = BSreadyForBundle

2 = BSbundleed

3 = BSdeliveredToComm
4 = BSsecondarySubmitted
5 = BSsecondaryError

TDBundleTrkid

integer

Bundle tracking ID

TDPreCommSVRId

integer

Service ID of service to execute
before sending to a communica-
tions agent

TDObjPerm

integer

Object permission

TDModByGroup

varchar2(60)

ID of group modified by

TDModByUser

varchar2(60)

ID of user modified by

TDModDt

date

Modification date. Default: system
date.

P Primary key

F Foreign key: TDTr ki d into Tracking (TRKI d)

02 July 99

Appendix A, ECXpert Database Schema 393

Tracking-related Tables

TrkSegment

The TrkSegment table stores document segment-level information.

Table A.22 TrkSegment

Name Req | Type (Len) Description

TSDocld " Y varchar (30) Document-level internal tracking ID

TSSegmentld Y varchar (30) ID of segment within document

TSSegmentPosition integer Segment sequence number within the
document

TSSegmentErrnum integer EDI error code. Valid values:

2 = unexpected segment

3 = mandatory segment missing
8 = segment has data elements in
error

TSElementPosition integer Data element sequence number
within the segment (only used when
error is in data element)

TSElementCopy varchar2 (128) | Copy of data elment data (only used
when error is in data element)

TrkDocDetalls

The TrkDocDetails table stores document card-level information.

Table A.23 TrkDocDetails

Name Req | Type (Len) Description

TDDId™F Y varchar(30) Detail ID

TDDCardNum” Y integer Detail card number

TDDCreationDt date Detail creation date. Default: sys-
tem date.

TDDFullPathName varchar2(255) | Full pathname

TDDIOType integer 1/0 type

TDDXlatFlags integer Translation flags

394 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Table A.23 TrkDocDetails (Continued)

Tracking-related Tables

Name Req | Type (Len) Description
TDDTrkid integer Tracking ID - internal tracking

number for the submission unit.
TDDIntgld integer Interchange identifier
TDDGrpld integer Group identifier
TDDState integer Tracking state. Valid values:

0 = TSunknown

1 = TSready

2 = TSinProgress

3 = TSdoneOK

4 = TSdoneBad

5 = TSalldoneOK

6 = TSbundled
TDDErrnum integer Tracking error number. Default: 0.
TDDSndrMBName varchar2(60) Sender member’s name
TDDRcvrMBName varchar2(60) Receiver member’s name
TDDDocType varchar2(60) Document type
TDDSubmittedTRKId integer Tracking ID of the submitter
TDDODbjPerm integer Object permission
TDDModByGroup varchar2(60) ID of group modified by
TDDModByUser varchar2(60) ID of user modified by
TDDModDt date Modification date

P Primary key: TDDI d + TDDCar dNum
F Foreign key: TDDI d into TrkDoc (TDI d)
F Foreign key: TSDocl d into TrkDoc (TDI d)

Appendix A, ECXpert Database Schema 395

Tracking-related Tables

MDNInfo

The MDNInfo table stores message disposition notification information used by
the ECXpert System.

Table A.24 MDNInfo

Name Req | Type (Len) Description
MDNId ? Y integer Message disposition notification 1D
MDNSndrMBName varchar2(60) Sender’s member name
MDNRcvrMBName varchar2(60) Receiver's member name
MDNReceiveDt varchar2(60) Date received
MDNOrigMsgld varchar2(128) | Original message ID
MDNOrigMsgDigest varchar2(60) Original message digest
MDNMicAlg integer (internal use)
MDN digest algorithm
MDNObjPerm integer Object permission
MDNModByGroup varchar2(60) ID of group modified by
MDNModByUser varchar2(60) ID of user modified by
MDNModDt date Modification date. Default: system
date.

P Primary key

396 Netscape ECXpert Site Administrator’s Handbook 02 July 99

Oftp

Tracking-related Tables

The Oftp table stores OFTP EERP (end-to-end-response) reconciliation infor-
mation used by the ECXpert System.

Table A.25 Oftp

Name

Req

Type (Len)

Description

OFFileName ”

varchar2(255)

The Virtual File Dataset Name.
SFIDSN field in the SFID Start File
OFTP command. Maximum length
is 26 characters.

OFTimeStamp P

varchar2(16)

The Virtual File Time Stamp. The
SFIDTIME field in the SFID Start
File OFTP command. It is exactly 6
characters long, and has the format
HHMMSS.

OFDateStamp P

varchar2(16)

The Virtual File Date Stamp. The
SFIDDATE field in the SFID Start
File OFTP command. Exactly 6
characters long, and has the format
YYMMDD.

OFTrkid

number

The tracking ID assigned to the
submitted file by the ECXpert sys-
tem.

OFSndrMBName

varchar2(60)

The OFTP Sender ID of the file.

OFRcvrMBName

varchar2(60)

The OFTP Receiver ID of the file.

OFDocType

varchar2(60)

The Document Type of the submit-
ted file.

OFEERPEXxpected

number

Count of the number of EERP’s
expected before this node can
return an EERP to the originator.
Who to return the EERP to is speci-
fied in the corresponding EERP
relationship. This value is incre-
mented whenever a file is sent out-
bound that is a descendant of the
original file.

02 July 99

Appendix A, ECXpert Database Schema 397

Tracking-related Tables

Table A.25 Oftp

Name Req | Type (Len) Description

OFEERPReceived number Count of the number of EERP’s
received by this OFTP node for this
particular OFTP file. Incremented
when EERP’s corrsponding to this
unit of work are received by the
ECXpert OFTP server.

OFEERPSchedType number Is the file for scheduled or immedi-
ate transmission?

0 = immediate

1 = scheduled

OFEERPState number Current state of the EERP entry:
0 = AWAITING_FINAL_EERP

1 =READY_TO_SEND

2 =SENT_OK

3 = FAILED_TO_SEND

P Primary key

EventLog

The EventLog table stores a log of processing events, including error condi-
tions.

Table A.26 EventLog

Name Req | Type (Len) Description

ELId? Y integer Event log ID

ELEventld " integer Event ID

ELCategory varchar2(60) Functional area in which event
took place (e.g. bundle, dispatcher,
smtp, etc.)

ELSeverity integer Severity of the event:

0 = unknown

10 = informational
20 = warning

30 = error

ELEventShortMsg varchar2(255) | Short message describing event

398 Netscape ECXpert Site Administrator’s Handbook 02 July 99

02 July 99

Table A.26 EventLog (Continued)

Tracking-related Tables

Name Req | Type (Len) Description

ELTrkid integer Tracking ID associated with event

ELIntgld integer Interchange 1D associated with
event if applicable

ELGrpld integer Group ID associated with event if
applicable

ELDocld integer Document ID associated with event
if applicable

ELTDId varchar2(30) Non-numeric document identifier.
Combination of numeric integers
according to following syntax:
TrackinglD-InterchangelD-
GrouplD-DocID

ELPercolate integer Flag to indicate whether severity of
event log has been percolated to
tracking tables

ELModByGroup varchar2(60) ID of last user to modify the data-
base row. (not used)

ELModByUser varchar2(60) Functional area in which event
took place (e.g. bundle, dispatcher,
smtp, etc.)

ELModDt date Date the row was last modified

Default: system date.

P Primary key

F Foreign key: ELI d into MsgFormats (MFI d)

Appendix A, ECXpert Database Schema 399

Tracking-related Tables

MsgFormats

The MsgFormats table stores text strings describing processing events, including
error conditions, that are entered into the EventLog table during processing.

Table A.27 MsgFormats

Name Req | Type (Len) Description
MFId P Y integer Message format 1D
MFCategory varchar2(60) Event category
MFSeverity integer Event severity
MFShortMsgFmt varchar2(255) | Short message format
MFLongMsgFmt long varchar Long message format
MFObjPerm integer Object permission
MFModByGroup varchar2(60) ID of group modified by
MFModByUser varchar2(60) ID of user modified by
MFModDt date Modification date. Default: system
date.

P Primary key

400 Netscape ECXpert Site Administrator’s Handbook

02 July 99

Symbols

() method
of EcxDocunent class 222, 229

A

AckExpected() method
of EcxPart ner shi p class 178

Active() method
of EcxMenber class 141
of EcxPart ner shi p class 178
Actuate reports, see reports
Add() method
of EcxAddr esses class 161
of EcxMenber class 141
of EcxPart ner shi p class 179
of EcxSer vi ce class 281
of EcxSer vi celLi st class 298

AddFile() method
of EcxSubmi t class 118

adding members 136
adding partnerships 170

API Interface
list of 53

ArchiveWaitPeriod() method
of EcxPart ner shi p class 180

B
Base64Decode() method
of CXI Pl ni t class 90

Base64Encode() method
of CXI Pl ni t class 91

billing system
database records 24

02 July 99

objects 24
blobinfo table 362

C

CardCount() method

of EcxDocunent class 219
CardFlags() method

of EcxDocunent class 220, 226

CardIOType() method
of EcxDocunent class 220

certificates table 375
certtypeinfo table 377
Change() method
of EcxMenber class 142
of EcxPar t ner shi p class 180

of EcxSer vi ce class 282

of EcxSer vi celLi st class 298
changing members’ fields 137
class 52
Clear() method

of EcxAddr esses class 161

of EcxDocunent class 220

of EcxLog class 256

of EcxMenber class 142

of EcxPar t ner shi p class 181

of EcxSer vi ce class 282

of EcxSer vi celLi st class 299

of EcxTr acki ng class 240
ClearErr() method

of EcxBase class 103
ClearFileList() method

of EcxSubni t class 119

communications services, user-defined 43
component editor, for reports 320

Index 401

Connect() method
of CXI PConnecti on class 92

connections, for reports 310, 312

ContactAddress1() method
of EcxMenmber class 143

ContactAddress2() method
of EcxMenber class 143

ContactCity() method
of EcxMenber class 144

ContactCompany() method
of EcxMenber class 144

ContactCountry() method
of EcxMenmber class 145

ContactEmailld() method
of EcxMenber class 145

ContactFax() method
of EcxMenber class 146

ContactName() method
of EcxMenber class 146

ContactPhone() method
of EcxMenber class 147

ContactState() method
of EcxMenber class 147

ContactZip() method
of EcxMenber class 148

controls, in reports 319

CreateCONTROL() method
of CXxsMSG class 81

CreateINPUT() method
of CXxsMSG class 83

CreateMSG() method
of CXxsMBGclass 80

CreateOUTPUT() method
of CXxsMSG class 84

CreatePreDefinedMONITOR() method
of CXxsMSG class 82

CreateRETRIES() method
of CXxsMSG class 81

CreateSTATUS() method
of CXxsMSG class 82

402 Netscape ECXpert Site Administrator’s Handbook

CreateTIMEOUT() method
of CXxsMSGclass 81

CreateUsrDefinedMONITOR() method
of CXxsMSG class 82

creating member objects 136
creating partnership objects 170

CreationDate() method
of EcxDocumnent class 221
of EcxTr acki ng class 241

CRL table 376
custom parameter file 33

custom services 30
calling conventions 30
command line arguments 39
data-specification file 32
language requirements 30
parameter-specification file 31
return conventions 30
writing a custom service 39

CXIP_MSG class
constructor 66
destructor 67

CXI P_MBG class (XML SDK) 66

CXIPConnection class
constructor 92
destructor 92

CXlI PConnect i on class (XML SDK) 91

CXIPInit class
constructor 89
CXI Pl nit class (XML SDK) 89

CXIPListener class
constructor 94
destructor 94
CXI PLi st ener class (XML SDK) 93

CXSubmit class
constructor 96
destructor 96
CXSubnmi t class (XML SDK) 96

CXxsDOM class
constructor 85

CxXxsDOMclass (XML SDK) 85

CXxsMSG class
constructor 67
destructor 67, 86, 89

CXxsMSG class (XML SDK) 67

D

data, in reports 319, 342
database access 23

database schema 347
blobinfo table 362
cautions 348
certificates table 375
certtypeinfo table 377
CRL table 376
dtservices table 360
eventlog table 398
job table 357
keypairs table 378
keys-related tables 375
mbaddresses table 365
mdninfo table 396, 397
members table 363
membership-related tables 362
msgformats table 400
overview 354
partnership-related tables 366
partnerships table 366
pncard table 371
pngroup table 372
pnstd table 373
services table 359
system-wide tables 357
tables 352
tracking table 379
tracking-related tables 379
trkdoc table 388
trkdocdetails table 394
trkgroup table 386
trkintg table 383
uniquekeys table 361
versions table 359

data-specification file 32

02 July 99

DataState() method

of EcxDocumnent class 221

of EcxTr acki ng class 241
DecimalPointCharacter() method

of EcxPar t ner shi p class 181
Delete() method

of EcxAddr esses class 161

of EcxDocumnent class 222

of EcxMenber class 148

of EcxPar t ner shi p class 182

of EcxSer vi ce class 282

of EcxSer vi ceLi st class 299

of EcxTr acki ng class 241
DeleteWaitPeriod() method

of EcxPar t ner shi p class 182

deleting members 139
deleting partnerships 174
Desc() method
of EcxSer vi ceLi st class 299

Description() method
of EcxMenber class 149
of EcxPar t ner shi p class 183

design editor, for reports 311
Docld() method

of EcxDocunent class 222
DocLastControlINumber() method

of EcxPar t ner shi p class 183
DocLock() method

of EcxPar t ner shi p class 184
DocPriority() method

of EcxPar t ner shi p class 184

DocType() method
of EcxDocunent class 222
of EcxPartnerl d class 211
of EcxPar t ner shi p class 185
of EcxTr acki ng class 242

Documentld() method
of EcxDocl d class 233

dtservices table 360
dynamic query, in reports 337

Index 403

E

EcxAddresses class
constructor 160
destructor 160
using 158

EcxAddr esses class 158

EcxBase class
constructor 103
destructor 103

EcxBase class 102

EcxDocld class
constructor 233
destructor 233

EcxDocl d class 231

EcxDocument class
constants and data types 218
constructor 218
destructor 219
using 215

EcxDocunent class 214

EcxDocumentld class
constants and data types 103

EcxFtpClient class
class variables 270
constructor 270
destructor 270
using 264
EcxFt pC i ent class 264, 292
EcxInit class
constructor 109
destructor 109
using 53, 108
Ecxl ni t class 52, 108
EcxLog class
class variables 254
constructor 255
destructor 255
using 253
EcxLog class 252

EcxLogin class
constructor 129

404 Netscape ECXpert Site Administrator’s Handbook

destructor 129
using 128

EcxLogi n class 128
EcxMember class

adding members 136
changing members’ fields 137
class variables 140
constructor 140

creating member objects 136
deleting members 139
destructor 140

listing members 138

EcxMenber class 134
EcxPartnerld class

constructor 210
destructor 211

EcxPar t nerld class 209
EcxPartnership class

adding partnerships 170

class variables 175

constructor 177

creating partnership objects 170
deleting partnerships 174
destructor 177

listing partnerships 171

using 169

EcxPart ner shi p class 166
ECXpert XML SDK 63

directory structure and source files 64
examples 99

EcxService class

class variables 281
constructor 281
destructor 281
using 277

EcxSer vi ce class 276
EcxServiceList class

class variables 297
constructor 297
destructor 297
using 293

EcxSer vi ceLi st class 292

02 July 99

EcxSubmit class
constructor 117
destructor 117
using 114

EcxSubmi t class 111

EcxTracking class
class variables 239
constructor 239
destructor 240
using 237

EcxTr acki ng class 236

ELCategory() method
of EcxLog class 256

ELDoclID() method
of EcxLog class 256

ElementSeparator() method
of EcxPart ner shi p class 185

ELEventld() method
of EcxLog class 256

ELEventShortMsg() method

of EcxLog class 257
ELGrpld() method

of EcxLog class 257
ELId() method

of EcxLog class 257
ELIntgld() method

of EcxLog class 257

ELSeverity() method
of EcxLog class 258

ELTDId() method
of EcxLog class 258

ELTrkld() method
of EcxLog class 258

EntryName() method

of EcxSer vi ce class 283

Errmsg() method
of EcxBase class 104

Errnum() method
of EcxBase class 104

ErrorHandler() method

eventlog table 398
examples, XML SDK 99
expression builder, for reports 322

F

figures
NAS/API interaction with ECXpert 52

file, custom parameter 33
FileName() method

of EcxDocunent class 222

of EcxTr acki ng class 242
flow, in reports 326
footers, in reports 326
Format() method

of CXxsDOMclass 86
frames, in reports 317

G

GenOptEnv() method
of EcxPar t ner shi p class 186

Get() method
of EcxDocunent class 223
of EcxMenber class 149
of EcxPar t ner shi p class 186
of EcxSer vi ce class 283
of EcxSer vi celLi st class 300
of EcxTr acki ng class 242

GetCONTROL() method
of CXxsM5Geclass 71

GetDeliveryMethod() method
of EcxSubmi t class 119

GetDocument() method
of CXxsDOMclass 87

GetDTD() method
of CXxsDOMclass 87

GetEcxIniFileName() method
of EcxSubni t class 119

GetErrors() method
of CXxsDOMclass 87

of EcxSer vi celLi st class 300

02 July 99 Index 405

GetFirstListEntry() method
of EcxFt pCl i ent class 271

GetINPUT() method
of CXxsM5Gclass 72

GetListCount() method
of EcxFt pCl i ent class 271

GetMapName() method
of EcxSubni t class 120

GetMONITOR() method
of CXxsM5Gclass 71

GetMSGTYPE() method
of CXxsMSG class 68

GetNextListEntry() method
of EcxFt pCl i ent class 271

GetNextTrackinglD() method
of EcxSubni t class 121

GetObijectAttribute() method
of CXxsDOMclass 88

GetObjectData() method
of CXxsDOMclass 88

GetObjectName() method
of CXxsDOMclass 88

GetOUTPUT() method
of CXxsMSGclass 74

GetPassword() method
of EcxSubmi t class 121

GetPredefinedMONITOR() method
of CXxsM5Gclass 71

GetRECEIVER() method
of CXxsMSGclass 70

GetRecipient() method
of EcxSubmi t class 122

GetReplyCode() method
of EcxFt pCl i ent class 272

GetReplyMsg() method
of EcxFt pCl i ent class 272

GetRETRIES() method
of CXxsMSG class 69

GetSENDER() method
of CXxsMSG class 69

406 Netscape ECXpert Site Administrator’s Handbook

GetSender() method
of EcxSubmi t class 122

GetSERVICE() method
of CXxsMSGclass 68

GetSSTATUS() method
of CXxsMBG class 69

GetTIMEOUT() method
of CXxsMBG class 68
GetTIMESTAMP() method
of CXxsMsGclass 70

GetUsrDefinedMONITOR() method
of CXxsM5Gclass 72

GroupGenerateDocAck() method
of EcxPar t ner shi p class 187

Groupld() method
of EcxDocl d class 233

GroupLastControlINumber() method
of EcxPar t ner shi p class 187

GroupLock() method
of EcxPar t ner shi p class 188

groups, in reports 338

GroupType() method
of EcxPar t ner shi p class 188

H

headers, in reports 326

Id() method
of EcxSer vi ce class 283
IEcxSubmit
list of methods for 55
sample code for 56
Init() method
of CXI Pl ni t class 90
of CXI PLi st ener class 94
of EcxFt pd i ent class 272
IntchngAckWaitPeriod() method
of EcxPar t ner shi p class 188

02 July 99

IntchngGenerateAck() method
of EcxPart ner shi p class 189

IntchngLastControlNumber() method

of EcxPart ner shi p class 189

IntchngLock() method
of EcxPar t ner shi p class 190

Interchangeld() method
of EcxDocl d class 234

interface 52

IsGroup() method
of EcxMenber class 150

IsReplyGood() method
of EcxFt pC i ent class 273

J

Java interfaces 52

JavaScript
examples 53
interface 52

job table 357
joins, in reports 334

K

keypairs table 378
keys-related tables 375

L

layout pane, for reports 311
layout, for reports 317
List() method
of EcxAddr esses class 162
of EcxDocument class 223
of EcxMenber class 150
of EcxPart ner shi p class 190
of EcxSer vi ce class 284
of EcxSer vi ceLi st class 300
listing members 138

listing partnerships 171

02 July 99

LogEvent() method
of EcxLog class 259

Logout method
of EcxLogi n class 130

M

MapDirection() method
of EcxPar t ner shi p class 208

MapName() method
of EcxPar t ner shi p class 191

MaxThread() method
of EcxSer vi ce class 284

mbaddresses table 365
mdninfo table 396, 397

Member() method
of EcxAddr esses class 162

members table 363
membership-related tables 362
MemberType 130

MemberType method
of EcxLogi n class 130

methods 52

ModByGroup() method
of EcxMenber class 151
of EcxSer vi ce class 284
of EcxSer vi celLi st class 301

ModByUser() method
of EcxMenber class 151
of EcxSer vi ce class 285
of EcxSer vi celLi st class 301

ModDt() method
of EcxMenber class 151
of EcxSer vi ce class 285
of EcxSer vi celLi st class 301

ModifyDate() method
of EcxDocunent class 224
of EcxTr acki ng class 244
More() method

of EcxAddr esses class 162
of EcxDocunent class 225

Index 407

of EcxLog class 259

of EcxMenmber class 151

of EcxPart ner shi p class 192
of EcxTr acki ng class 244

msgformats table 400

N

Name() method
of EcxMenber class 152
of EcxSer vi ce class 285

NAS ECXpert extension 52

Next() method
of EcxAddr esses class 163
of EcxDocument class 225
of EcxMenber class 152
of EcxPart ner shi p class 192
of EcxSer vi ce class 286
of EcxSer vi ceLi st class 302
of EcxTr acki ng class 245

O

ObjPerm() method
of EcxMenber class 153
of EcxSer vi ce class 286
of EcxSer vi celLi st class 302

OutRelease() method
of EcxPart ner shi p class 193

OutStandard() method
of EcxPart ner shi p class 193

OutVersion() method
of EcxPar t ner shi p class 193

P

page list, in reports 326
page, in reports 326

Param() method
of EcxSer vi ce classss 287

parameters, for reports 330
parameter-specification file 31

408 Netscape ECXpert Site Administrator’s Handbook

ParentName() method
of EcxMenber class 153

Parse() method
of CXxsDOMclass 86

Partnerld() method
of EcxPar t ner shi p class 194

Partnershipld() method
of EcxPart ner | d class 211

partnership-related tables 366
partnerships table 366

Password() method
of EcxMenber class 153

PathName() method
of EcxSer vi ce class 287

pncard table 371
pngroup table 372
pnstd table 373

PreEnveloped() method
of EcxPar t ner shi p class 194

PrimaryXportParam() method
of EcxPar t ner shi p class 195

PrimaryXportType() method
of EcxPar t ner shi p class 196

ProcessMessage() method
of CXI PLi st ener class 95

Progress() method
of EcxTr acki ng class 245

public int addFile(java.lang.String

pFile,java.lang.String pFileType) 55

public int clearFileList() 55
public int getFirstTrackingID() 55
public int getNextTrackingID() 55

public int setDeliveryMethod(java.lang.String

pDeliveryMethod) 55

public int setEcxIniFileName(java.lang.String

plniFileName) 55

public int setMapName(java.lang.String
pMapName) 55

02 July 99

public int setPassword(java.lang.String
pPassword) 56

public int setRecipient(java.lang.String
pRecipient) 56

public int setSender(java.lang.String
pSender) 56

public int submit(boolean bDataStreaming) 56
public java.lang.String getDeliveryMethod() 55
public java.lang.String getEcxIniFileName() 55
public java.lang.String getMapName() 55
public java.lang.String getPassword() 55
public java.lang.String getRecipient() 55
public java.lang.String getSender() 55

Q

Qual() method
of EcxAddr esses class 163

Qualld() method
of EcxAddr esses class 164

query, for reports 312, 334

R

RevrAppCode() method
of EcxPart ner shi p class 196

RevrAppQual() method

of EcxPart ner shi p class 196
RcvrMBName() method

of EcxSer vi ceLi st class 303

Read() method
of EcxDocunent class 225

ReceiveMessaget() method
of CXI PConnect i on class 93

ReceiverCertificateType() method
of EcxPart ner shi p class 197

ReceiverName() method
of EcxPart ner shi p class 197
of EcxTr acki ng class 246

ReceiverQual() method
of EcxPart ner shi p class 198

02 July 99

ReceiverQualld() method
of EcxPar t ner shi p class 198

Release() method
of EcxDocumnent class 226
of EcxTr acki ng class 246

ReleaseCharacter() method
of EcxPar t ner shi p class 199

reports
component editor 320
controls 319
data 342
database connection 310, 312
design editor 311
displaying data 319
dynamic query 337
executing 324
expression builder 322
field list, for reports 320
flow 326
footers 326
frames 317
groups 338
headers 326
joins 334
layout 317
layout pane 311
page 326
page list 326
parameters 330
query 312, 334
requester dialog 324
structure pane 311
variables 342
where clause 335
wizard 310

requester dialog, for reports 324

RetrieveLog() method
of EcxLog class 260
Run() method
of CXI PLi st ener class 95

RunCommand() method
of EcxFt pd i ent class 273

Index 409

S

schema, database see database schema

SecondaryTitle() method

of EcxDocumnent class 226

of EcxTr acki ng class 246
SecondaryValue() method

of EcxDocumnent class 226

of EcxTr acki ng class 246
SecondaryXportParam() method

of EcxPart ner shi p class 199
SecondaryXportType() method

of EcxPart ner shi p class 200
Security() method

of EcxPar t ner shi p class 200
SegmentTerminator() method

of EcxPart ner shi p class 201
SenderCertificateType() method

of EcxPart ner shi p class 202
SenderName() method

of EcxDocurent class 227

of EcxPar t ner shi p class 203
SenderQual() method

of EcxPar t ner shi p class 204
SenderQualld() method

of EcxPart ner shi p class 204
SendMessaget() method

of CXI PConnect i on class 93
SendType() method

of EcxPar t ner shi p class 205
SeqNum() method

of EcxSer vi ceLi st class 303
services

custom 30

user-defined communications 43
services table 359

SetCONTROL() method
of CXxsMSGclass 75

SetDebugMode() method
of CXI Pl ni t class 90

SetDocPath() method

410 Netscape ECXpert Site Administrator’s Handbook

of CXSubni t class 98

SetDocTransport() method
of CXSubmi t class 99

SetDocType() method
of CXSubmi t class 98

SetEcxIniFileName() method
of EcxSubmi t class 123

SetHost() method
of CXSubmi t class 97

SetIDs() method
of CXSubni t class 99

SetINPUT() method
of CXxsM5Gclass 79

SetLogFiles() method
of CXI PI ni t class 90

SetLogin() method
of EcxAddr esses class 164
of EcxDocunent class 227
of EcxLog class 261
of EcxMenber class 154
of EcxPar t ner shi p class 205
of EcxSer vi ce class 288
of EcxTr acki ng class 247

SetMapName() method

of EcxSubmi t class 123
SetMSGTYPE() method

of CXxsMBG class 76
SetOUTPUT() method

of CXxsMBG class 80
SetPassword() method

of EcxSubmi t class 124
SetPort() method

of CXSubmi t class 97
SetPreDefinedMONITOR() method

of CXxsMsGclass 77

SetReadyForPurge() method
of EcxDocunent class 228
of EcxTr acki ng class 247

SetRECEIVER() method
of CXxsMBG class 78

SetReceiver() method

of CXSubmi t class 98

SetRETRIES() method
of CXxsMSGclass 77

SetSENDER() method
of CXxsMSGclass 78

SetSender() method
of CXSubm t class 97
of EcxSubmi t class 125

SetSERVICE() method
of CXxsMSGclass 76

SetSTATUS() method
of CXxsM5Gclass 77

SetTIMEOUT() method
of CXxsMSGclass 76

SetTIMESTAMP() method
of CXxsMSGclass 78

SetUsrDefinedMONITOR() method
of CXxsMSG class 79

SetValues() method

of EcxDocl d class 234

of EcxPart ner | d class 211
SndrAppCode() method

of EcxPart ner shi p class 202

SndrAppQual() method
of EcxPar t ner shi p class 202

Standard() method
of EcxDocument class 228
of EcxTr acki ng class 247

Standardld() method

of EcxPart ner| d class 212
StandardName() method

of EcxPar t ner shi p class 206
StandardRelease() method

of EcxPar t ner shi p class 206
StandardVersion() method

of EcxPar t ner shi p class 207

State() method
of EcxDocumnent class 228
of EcxTr acki ng class 248

structure pane, for reports 311

02 July 99

SubElementSeparator() method
of EcxPar t ner shi p class 207

Submit() method
of CXSubni t class 96
of EcxSubm t class 125

system-wide tables 357

T

tables, in database 352

TestProductionFlag() method
of EcxPar t ner shi p class 208

Title() method
of EcxDocumnent class 229
of EcxTr acki ng class 248

tracking table 379

Trackingld() method
of EcxDocl d class 234

tracking-related tables 379

TrackState() method
of EcxDocunent class 229

TradingXpert API Interfaces 53
list of 53

TranslatedFileName() method
of EcxDocunent class 230
of EcxTr acki ng class 249

trkdoc table 388
trkdocdetails table 394
trkgroup table 386
trkintg table 383

Trusted() method
of EcxMenber class 154

Type() method
of EcxMenber class 155
of EcxSer vi ce class 288

U

uniquekeys table 361

user-defined communications services 43
writing 49

Index 411

\

Value() method
of EcxDocunent class 230
of EcxTr acki ng class 249

variables, in reports 342

Version() method
of EcxDocunent class 230
of EcxTr acki ng class 249

versions table 359

w

where clause, in reports 335
wizard, for reports 310

X
XML, ECXpert XML SDK 63
directory structure and source files 64

XportParam() method
of EcxDocunent class 231

XportType() method
of EcxDocunent class 231

412 Netscape ECXpert Site Administrator’s Handbook 02 July 99

	About this Book
	Before You Begin
	Downloading the Latest Version of any ECXpert Release Note

	The ECXpert Documentation Set
	Cross-Document Index
	Release Note
	Getting Started Guide
	User’s Guide
	Site Administrator’s Handbook
	Operations Reference Manual

	Audience
	Organization
	Conventions

	Introducing the ECXpert Software Developer’s Kit
	Overview
	Custom Services
	User-Defined Communications Service
	ECXpert API
	Class Library
	Relationship Between Objects and Database Records
	Database Access
	Using Lists
	Error Handling
	Oracle Warnings When Compiling the ECXpert SDK

	Custom Reports

	Creating a Custom Service
	Overview
	Language Requirements
	Call and Return Conventions
	The Parameter-specification File
	The Data-specification File
	The Custom Parameter File

	Custom Service Examples
	Parsing Command Line Arguments
	Implementing a File-copy Service
	Implementing a Submission Service

	Creating a User-defined Communications Service
	Overview
	Modifying the Configuration File (ecx.ini)
	Writing a User-defined Communications Service

	Using the NAS ECXpert Submit Extension
	About the NAS ECXpert Extension
	NAS ECXpert Extension Interfaces
	Using the NAS ECXpert Submit Extension
	Syntax and Methods
	Example

	The ECXpert XML SDK
	Overview
	Directory Structure and Source Files
	CXIP_MSG Class Reference
	Constructor and Destructor

	CXxsMSG Class Reference
	Constructor and Destructor
	Methods
	GetMSGTYPE()
	GetSERVICE()
	GetTIMEOUT()
	GetRETRIES()
	GetSTATUS()
	GetSENDER()
	GetRECEIVER()
	GetTIMESTAMP()
	GetCONTROL()
	GetMONITOR()
	GetPredefinedMONITOR()
	GetUsrDefinedMONITOR()
	GetINPUT()
	GetOUTPUT()
	SetCONTROL()
	SetMSGTYPE()
	SetSERVICE()
	SetTIMEOUT()
	SetRETRIES()
	SetSTATUS()
	SetPreDefinedMONITOR()
	SetSENDER()
	SetRECEIVER()
	SetTIMESTAMP()
	SetUsrDefinedMONITOR()
	SetINPUT()
	SetOUTPUT()
	CreateMSG()
	CreateCONTROL()
	CreateTIMEOUT()
	CreateRETRIES()
	CreateSTATUS()
	CreatePreDefinedMONITOR()
	CreateUsrDefinedMONITOR()
	CreateINPUT()
	CreateOUTPUT()

	CXxsDOM Class Reference
	Constructor and Destructor
	Methods
	Parse()
	Format()
	GetErrors()
	GetDTD()
	GetDocument()
	GetObjectName()
	GetObjectData()
	GetObjectAttribute()

	CXIPInit Class Reference
	Constructor and Destructor
	Methods
	Init()
	SetDebugMode()
	SetLogFiles()
	Base64Decode()
	Base64Encode()

	CXIPConnection Class Reference
	Constructor and Destructor
	Methods
	Connect()
	SendMessage()
	ReceiveMessage()

	CXIPListener Class Reference
	Constructor and Destructor
	Methods
	Init()
	Run()
	ProcessMessage()

	CXSubmit Class Reference
	Constructor and Destructor
	Methods
	Submit()
	SetHost()
	SetPort()
	SetSender()
	SetReceiver()
	SetDocType()
	SetDocPath()
	SetDocTransport()
	SetIDs()

	Examples

	The EcxBase Class
	About the EcxBase Class
	EcxBase Class Reference
	Constants and Data Types
	Constructor and Destructor
	Methods
	ClearErr()
	Errnum()
	Errmsg()

	The EcxInit Class
	About the EcxInit Class
	Using the EcxInit Class
	EcxInit Class Reference
	Constructor and Destructor

	The EcxSubmit Class
	About the EcxSubmit Class
	Using the EcxSubmit Class
	EcxSubmit Class Reference
	Constructor and Destructor
	Methods
	AddFile()
	ClearFileList()
	GetDeliveryMethod()
	GetEcxIniFileName()
	GetFirstTrackingID()
	GetMapName ()
	GetNextTrackingID()
	GetPassword()
	GetRecipient()
	GetSender()
	SetDeliveryMethod()
	SetEcxIniFileName()
	SetMapName()
	SetPassword()
	SetRecipient()
	SetSender()
	Submit()

	The EcxLogin Class
	About the EcxLogin Class
	Using the EcxLogin Class
	EcxLogin Class Reference
	Constructor and Destructor
	Methods
	Login()
	Logout()
	MemberType()

	The EcxMember Class
	About the EcxMember Class
	Using the EcxMember Class
	Creating Member Objects
	Adding Members
	Changing Members’ Fields
	Listing Members
	Deleting Members

	EcxMember Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	Active()
	Add()
	Change()
	Clear()
	ContactAddress1()
	ContactAddress2()
	ContactCity()
	ContactCompany()
	ContactCountry()
	ContactEmailId()
	ContactFax()
	ContactName()
	ContactPhone()
	ContactState()
	ContactZip()
	Delete()
	Description()
	Get()
	IsGroup()
	List()
	ModByGroup()
	ModByUser()
	ModDt()
	More()
	Name()
	Next()
	ObjPerm()
	ParentName()
	Password()
	SetLogin()
	Trusted()
	Type()

	The EcxAddresses Class
	About the EcxAddresses Class
	Using the EcxAddresses Class
	EcxAddresses Class Reference
	Constructor and Destructor
	Methods
	Add()
	Clear()
	Delete()
	List()
	Member()
	More()
	Next()
	Qual()
	QualId()
	SetLogin()

	Partnership-Related Classes
	About the EcxPartnership Class
	Using the EcxPartnership Class
	Creating Partnership Objects
	Adding Partnerships
	Listing Partnerships
	Deleting Partnerships

	EcxPartnership Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	AckExpected()
	Active()
	Add()
	ArchiveWaitPeriod()
	Change()
	Clear()
	DecimalPointCharacter()
	Delete()
	DeleteWaitPeriod()
	Description()
	DocLastControlNumber()
	DocLock()
	DocPriority()
	DocType()
	ElementSeparator()
	GenOptEnv ()
	Get()
	GroupGenerateDocAck()
	GroupLastControlNumber()
	GroupLock()
	GroupType()
	IntchngAckWaitPeriod()
	IntchngLastControlNumber()
	IntchngGenerateAck()
	IntchngLock()
	List()
	MapName()
	More()
	Next()
	OutRelease()
	OutStandard()
	OutVersion()
	PartnerId()
	PreEnveloped()
	PrimaryXportParam()
	PrimaryXportType()
	RcvrAppCode()
	RcvrAppQual()
	ReceiverCertificateType()
	ReceiverName()
	ReceiverQual()
	ReceiverQualId()
	ReleaseCharacter()
	SecondaryXportParam()
	SecondaryXportType()
	Security()
	SegmentTerminator()
	SndrAppCode()
	SndrAppQual()
	SenderCertificateType()
	SenderName()
	SenderQual()
	SenderQualId()
	SendType()
	SetLogin()
	StandardName()
	StandardRelease()
	StandardVersion()
	SubElementSeparator()
	TestProductionFlag()
	MapDirection()

	About the EcxPartnerID Class
	EcxPartnerID Class Reference
	Constructor and Destructor
	Methods
	DocType()
	PartnershipId()
	SetValues()
	StandardId()

	Document-Related Classes
	About the EcxDocument Class
	Using the EcxDocument Class
	EcxDocument Class Reference
	Constants and Data Types
	Constructor and Destructor
	Methods
	CardCount()
	CardFlags()
	CardIOType()
	Clear()
	CreationDate()
	DataState()
	Delete()
	DocId()
	DocType()
	FileName()
	Get()
	List()
	ModifyDate()
	More()
	Next()
	Read()
	Release()
	SecondaryTitle()
	SecondaryValue()
	SenderName()
	SetLogin()
	SetReadyForPurge()
	Standard()
	State()
	Title()
	TrackState()
	TranslatedFileName()
	Value()
	Version()
	XportParam()
	XportType()

	About the EcxDocID Class
	EcxDocID Class Reference
	Constructor and Destructor
	Methods
	DocumentId()
	GroupId()
	InterchangeId()
	SetValues()
	TrackingId()

	The EcxTracking Class
	About the EcxTracking Class
	Using the EcxTracking Class
	EcxTracking Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	Clear()
	CreationDate()
	Delete()
	DataState()
	DocType()
	FileName()
	Get()
	List()
	ModifyDate()
	More()
	Next()
	Progress()
	ReceiverName()
	Release()
	SecondaryTitle()
	SecondaryValue()
	SetLogin()
	SetReadyForPurge()
	Standard()
	State()
	Title()
	TranslatedFileName()
	Value()
	Version()

	The EcxLog Class
	About the EcxLog Class
	Using the EcxLog Class
	EcxLog Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	Clear()
	ELCategory()
	ELDocId()
	ELEventId()
	ELEventShortMsg()
	ELGrpId()
	ELId()
	ELIntgId()
	ELSeverity()
	ELTDId()
	ELTrkId()
	LogEvent()
	More()
	Next()
	RetrieveLog()
	SetLogin()

	The EcxFtpClient Class
	About the EcxFtpClient Class
	Using the EcxFtpClient Class
	Listing Files in the Current Directory
	Retrieving File Names
	Transferring Files

	}EcxFtpClient Class Reference
	Constructor and Destructor
	Methods
	GetListCount ()
	GetFirstListEntry ()
	GetNextListEntry ()
	GetReplyCode ()
	GetReplyMsg ()
	Init ()
	IsReplyGood ()
	RunCommand ()

	The EcxService Class
	About the EcxService Class
	Using the EcxService Class
	Creating a Service Object
	Adding a Service
	Listing All Services
	Modifying a Service
	Deleting a Service

	EcxServiceClass Reference
	Class Variables
	Constructor and Destructor
	Methods
	Add ()
	Change()
	Clear()
	Delete()
	EntryName ()
	Get()
	Id ()
	List()
	MaxThread ()
	ModByGroup()
	ModByUser()
	ModDt()
	More ()
	Name()
	Next()
	ObjPerm()
	Param ()
	PathName ()
	SetLogin()
	Type()

	The EcxServiceList Class
	About the EcxServiceList Class
	Using the EcxServiceList Class
	Creating a Service List Object
	Adding a Service List
	Listing All Service Lists
	Modifying a Service List
	Deleting a Service List

	EcxServiceList Class Reference
	Class Variables
	Constructor and Destructor
	Methods
	Add ()
	Change()
	Clear()
	Delete()
	Desc ()
	ErrorHandler ()
	Get()
	List()
	ModByGroup()
	ModByUser()
	ModDt()
	More ()
	Next()
	ObjPerm()
	RcvrMBName ()
	SeqNum
	ServiceListName ()
	ServiceParams ()
	SetLogin()
	SndrMBName ()
	SVRId ()
	SVRName ()
	TypeName ()

	Customizing Reports
	Overview
	Starting a New Report
	Building a Query
	Laying Out a Report
	Creating Frames
	Displaying Data
	Running a Report
	Adding Headers and Footers

	Adding Report Parameters
	Building Complex Queries
	Joining Tables
	Creating Dynamic Queries

	Displaying Groups of Data
	Displaying Row-related Data

	ECXpert Database Schema
	Cautions in Using the Database Schema
	Extending Table and Rollback Segment Space
	Values of AckState
	Alphabetical Listing of Tables
	Schema Overview
	System-wide Tables
	Job
	Versions
	Services
	DTServices
	UniqueKeys
	BlobInfo

	Membership-related Tables
	Members
	MBAddresses

	Partnership-related Tables
	Partnerships
	PNDocs
	PNCard
	PNGroup
	PNStd

	Certificate-related Tables
	Certificates
	CRL
	CertTypeInfo
	KeyPairs

	Tracking-related Tables
	Tracking
	TrkIntchg
	TrkGroup
	TrkDoc
	TrkSegment
	TrkDocDetails
	MDNInfo
	Oftp
	EventLog
	MsgFormats

	Index

