Présentation

  • meilleure granularité ...
    1. # Classification and Regression Trees (CART)
    2. library(rpart)
    3. dt<-brabant[samp,]
    4. attach(dt)
    5. formula<-if_cde97 ~ r6 + rr6 + f6m + m6m + mm6m + caa96 + cda96
    6. rfm.rpart<- rpart(formula, method="class", control=rpart.control(cp=.001))
    7. #splrpart<-as.matrix(rfm.rpart$splits)
    8. plot(rfm.rpart)
    9. text(rfm.rpart)
    10. dt<-brabant[-samp,]
    11. attach(dt)
    12. predictv<-predict(rfm.rpart, newdata=dt)[,2]
    13. names(predictv)<-1:length(predictv)
    14. gc<-gainchart(predictv,if_cde97)
    15. par(mfrow=c(2,2))
    16. plot_gaincharts(gc)
    Michel Calciu et Francis Salerno ; - Notes de cours à l'IAE de Lille 2004 - -