Présentation
meilleure granularité ...
- # Classification and Regression Trees (CART)
- library(rpart)
- dt<-brabant[samp,]
- attach(dt)
- formula<-if_cde97 ~ r6 + rr6 + f6m + m6m + mm6m + caa96 + cda96
- rfm.rpart<- rpart(formula, method="class", control=rpart.control(cp=.001))
- #splrpart<-as.matrix(rfm.rpart$splits)
- plot(rfm.rpart)
- text(rfm.rpart)
- dt<-brabant[-samp,]
- attach(dt)
- predictv<-predict(rfm.rpart, newdata=dt)[,2]
- names(predictv)<-1:length(predictv)
- gc<-gainchart(predictv,if_cde97)
- par(mfrow=c(2,2))
- plot_gaincharts(gc)
|