Presentation

  1. # Neural networks (Multilayer perceptron)
  2. library(nnet)
  3. dt<-brabant[samp,]
  4. attach(dt)
  5. formula<-if_cde97 ~ r6 + rr6 + f6m + m6m + mm6m + caa96 + cda96
  6. rfm.nn<-nnet(formula, size = 4, rang = 0.1, decay=0.1, maxit=500)
  7. dt<-brabant[-samp,]
  8. attach(dt)
  9. predictv<-(predict(rfm.nn, newdata=dt))[,1]
  10. names(predictv)<-1:length(predictv)
  11. gc<-gainchart(predictv,if_cde97)
  12. par(mfrow=c(2,2))
  13. plot_gaincharts(gc)
Michel Calciu et Francis Salerno ; - Notes de cours à l'IAE de Lille 2004 - -