Le modèle logistique - estimation

  1. #Logit Regression
  2. dt<-brabant[samp,]
  3. attach(dt)
  4. formula<-if_cde97 ~ r6 + rr6 + f6m + m6m + mm6m + caa96 + cda96
  5. rfm.logit<-glm(formula,family=binomial)
  6. par(mfrow=c(2,2))
  7. plot(rfm.logit)
  8. summary(rfm.logit)
  9. dt<-brabant[-samp,]
  10. attach(dt)
  11. predictv<-predict(rfm.logit, type="response", newdata=dt)
  12. names(predictv)<-1:length(predictv)
  13. gc<-gainchart(predictv,dt$if_cde97)
  14. par(mfrow=c(2,2))
  15. plot_gaincharts(gc)
Michel Calciu et Francis Salerno ; - Notes de cours à l'IAE de Lille 2004 - -