Presentation

  1. # Two stage regression
  2. dt<-brabant[samp,]
  3. dt$logitrate=predict(rfm.logit, type="response")
  4. dt<-dt[which(ca97>0),]
  5. attach(dt)
  6. rfm.2stage<-lm(ca97 ~r6 + rr6 + f6m + m6m + mm6m + caa96 + cda96 + logitrate)
  7. dt<-brabant[-samp,]
  8. dt$logitrate=predict(rfm.logit, type="response", newdata=dt)
  9. attach(dt)
  10. predictv<-predict(rfm.2stage, newdata=dt)*predict(rfm.logit, type="response", newdata=dt)
  11. names(predictv)<-1:length(predictv)
  12. gc<-gainchart_cont(predictv,ca97)
  13. par(mfrow=c(2,2))
  14. plot_gaincharts_cont(gc)
Loading required package: tcltk 
Loading required package: lattice
Loading required package: foreign
Loading required package: abind
Loading required package: lmtest
Loading required package: multcomp
Loading required package: relimp
Loading required package: effects
Loading required package: rgl
Loading required package: mgcv
Michel Calciu et Francis Salerno ; - Notes de cours à l'IAE de Lille 2004 - -